Advertisement

Creatine Kinase and Intermediate Filaments in Cultured Mammalian Cells

  • Barry S. Eckert
  • Stephen J. Koons
  • C. Richard Zobel

Abstract

Creatine kinase catalyzes the Lohmann reaction—the conversion of ADP and phosphorylcreatine to ATP and creatine. This reaction, essential in vertebrate muscle, has not been studied extensively in tissue other than muscle and brain. In this chapter, we summarize our immunofluorescence localization studies (Eckert et al.,1980) that show the association of creatine kinase with intermediate filaments in cultured rat kangaroo kidney epithelial cells (PTK1) and in cultured mouse uterine fibroblast cells (BALB/3T3). We also discuss the association of creatine kinase with the mitotic spindle of dividing cells (Koons et al., 1980, 1981).

Keywords

Creatine Kinase Intermediate Filament Mitotic Spindle Creatine Kinase Activity Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annesley, T. M., and Walker, J. B., 1978, Formation and utilization of novel high energy phosphate reservoirs in Ehrlich ascites tumor cells: Cyclocreatine-3-P and creatine-P, J. Biol. Chem. 253: 8120.Google Scholar
  2. Bershadsky, A. D., Gelfand, J. I., Svitkina, T. M., and Tint, I. S., 1980, Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism, Exp. Cell Res. 127: 421.CrossRefGoogle Scholar
  3. Bertlet, H. H., 1976, Uptake and phosphorylation of IC creatine by mouse cardiac muscle in vivo, Recent Adv. Stud. Card. Struct. Metab. 7: 183.Google Scholar
  4. Bessman, S. P., and Fonyo, A., 1966, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration, Biochem. Biophys. Res. Commun. 22: 597.CrossRefGoogle Scholar
  5. Blose, S. H., 1979, Ten nanometer filaments and mitosis: Maintenance of structural continuity in dividing endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 76: 3372.CrossRefGoogle Scholar
  6. Browne, C. L., Lockwood, A. H., Su, J.-L., Beavo, J. A., and Steiner, A. L., 1980, Immunofluorescent localization of cyclic nucleotide-dependent protein kinases on the mitotic apparatus of cultured cells, J. Cell Biol. 87: 336.CrossRefGoogle Scholar
  7. Cande, W. Z., and Wolniak, S. M., 1978, Chromosome movement in lysed mitotic cells is inhibited by banadate, J. Cell Biol. 79: 573.CrossRefGoogle Scholar
  8. Caravatti, M., Perriard, J.-C., and Eppenberger, H. M., 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken: Biosynthesis of creatine kinase subunits M and B, J. Biol. Chem. 254: 1388.Google Scholar
  9. Carlson, F. D., and Siger, A., 1960, The mechanochemistry of muscular contraction. I. The isometric twitch, J. Gen. Physiol. 44: 33.CrossRefGoogle Scholar
  10. Carlson, F. D., Hardy, D. J., and Wilkie, D. R., 1963, Total energy production and phosphocreatine hydrolysis in the isotonic twitch, J. Gen. Physiol. 46: 851.CrossRefGoogle Scholar
  11. Clarke, F. M., Shaw, F. D., and Morton, D. J., 1980, Effect of electrical stimulation post mortem of bovine muscle on the binding of glycolytic enzymes: Functional and structural implications, Biochem. J. 186: 105.Google Scholar
  12. Dawson, D. M., Eppenberger, H. M., and Kaplan, N. O., 1967, The comparative enzymology of creatine kinases. II. Physical and chemical properties, J. Biol. Chem. 242: 210.Google Scholar
  13. Eckert, B. S., and Snyder, J. A., 1978, Combined immunofluorescence and high voltage electron microscopy of cultured mammalian cells using an antibody specific for glutaraldehydetreated tubulin, Proc. Natl. Acad. Sci. U.S.A. 75: 334.CrossRefGoogle Scholar
  14. Eckert, B. S., Koons, S. J., Schantz, A. W., and Zobel, C. R., 1980, Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells, J. Cell Biol. 86: 1.CrossRefGoogle Scholar
  15. Ennor, A. H., and Morrison, J. F., 1958, Biochemistry of the phosphagens and related guanidines, Physiol. Rev. 38: 631.Google Scholar
  16. Eppenberger, H. M., Dawson, D. M., and Kaplan, N. O., 1967, Comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues, J. Biol. Chem. 242: 204.Google Scholar
  17. Erashova, S., Saks, V. A., Sharov, V. G., and Lyzlova, S. N., 1979, Creatine kinase from muscle cell nuclei, Biochemistry (USSR) 44: 295.Google Scholar
  18. Felix, H., and Strauli, P., 1976, Different distribution pattern of 100-A filaments in resting and locomotive leukaemia cells, Nature 261: 604.CrossRefGoogle Scholar
  19. Franke, W. W., Weber, K., Osborn, M., Schmid, E., and Freudenstein, C., 1978, Antibody to prekeratin: Decoration of tonofilament-like arrays in various cells of epithelial character, Exp. Cell Res. 116: 429.CrossRefGoogle Scholar
  20. Franke, W. W., Schmid, E., Winter, S., Osborn, M., and Weber, K., 1979, Widespread occurence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates, Exp. Cell Res. 123: 25.CrossRefGoogle Scholar
  21. Hall, N., Addis, P., and DeLuca, M., 1979, Mitochondrial creatine kinase: Physical and kinetic properties of the purified enzyme from beef heart, Biochemistry 18: 1745.CrossRefGoogle Scholar
  22. Hewgley, P. B., Runge, M. S., Williams, R. C., Jr., and Puett, D., 1979, Microtubule preparations and 10-nm filaments from bovine brain contain activatable cyclic nucleotide phosphodiesterase, Biophys. J. 25: 209a (abstract).CrossRefGoogle Scholar
  23. Iyengar, M. R., and Iyengar, C. L., 1980, Interaction of creatine kinase isoenzymes with beef heart mitochondrial membrane: A model for association of mitochondrial and cytoplasmic isoenzymes with inner membrane, Biochemistry 19: 2176.CrossRefGoogle Scholar
  24. Jacobs, H., Heldt, H. W., and Klingenberg, M., 1964, High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase, Biochem. Biophys. Res. Commun. 16: 516.CrossRefGoogle Scholar
  25. Jacobus, W. E., and Lehninger, A. L., 1973, Creatine kinase of rat heart mitochondria: Coupling of creatine phosphorylation to electron transport, J. Biol. Chem. 284: 4803.Google Scholar
  26. Kelly, D. E., 1966, Fine structure of desmosomes, hemidesmosomes and an adepidermal globular layer in developing newt epidermis, J. Cell Biol. 28: 51.CrossRefGoogle Scholar
  27. Knull, H. R., Taylor, W. F., and Wells, W. W., 1973, Effects of energy metabolism on in vivo distribution of hexokinase in brain, J. Biol. Chem. 248: 5415.Google Scholar
  28. Koons, S. J., Eckert, B. S., and Zobel, C. R., 1980, Association of creatine phosphokinase with the mitotic spindle in cultured mammalian cells, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2049 (abstract).Google Scholar
  29. Koons, S. J., Eckert, B. S., and Zobel, C. R., 1981, Localization of creatine kinase in the mitotic spindle by immunofluorescence (in prep.).Google Scholar
  30. Lazarides, E., 1977, Two general classes of cytoplasmic actin filaments in tissue culture cells: The role of tropomyosin, J. Supramol. Struct. 5: 531.CrossRefGoogle Scholar
  31. Lazarides, E., and Hubbard, B., 1976, Immunological characterization of the subunit of the 100 A filaments from muscle cells, Proc. Natl. Acad. Sci. U.S.A. 73: 4344.CrossRefGoogle Scholar
  32. Lin, J. J. C., 1980, Monoclonal antibodies against myofibril components of rat skeletal muscle decorate the intermediate filaments of cultured cells, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2167 (abstract).Google Scholar
  33. Liou, R.-S., and Anderson, S., 1980, Activation of rabbit muscle phosphofrtictokinase by F-actin and by reconstituted thin filaments, Biochemistry 19: 2684.CrossRefGoogle Scholar
  34. Loike, J. D., Kozler, V. F., and Silverstein, S. C., 1979, Increased ATP and creatine phosphateGoogle Scholar
  35. turnover in phagocytosing mouse peritoneal macrophages, J. Biol. Chem. 254: 9558.Google Scholar
  36. Masters, C. J., 1978, Interactions between soluble enzymes and subcellular structure, Trends Biochem. Sci. 3: 206.CrossRefGoogle Scholar
  37. Morimoto, K., and Harrington, W. F., 1972, Isolation and physical chemical properties of an M-line protein from skeletal muscle, J. Biol. Chem. 247: 3052.Google Scholar
  38. Morris, G. E., Cooke, A., and Cole, R. J., 1972, Isoenzymes of creatine phosphokinase during myogenesis in vitro, Exp. Cell Res. 74: 582.CrossRefGoogle Scholar
  39. Noda, L., Kuby, S. A., and Lardy, H. A., 1954, Adenosinetriphosphate-creatine transphosphorylase. IV. Equilibrium studies, J. Biol. Chem. 210: 83.Google Scholar
  40. Osborn, M., Franke, W. W., and Weber, K., 1977, Visualization of a system of filaments 10 nm thick in cultured cells of an epithelial line (PTK,) by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 74: 2490.CrossRefGoogle Scholar
  41. Perriard, J.-C., Caravatti, M., Perriard, E. R., and Eppenberger, H. M., 1978, Quantitation of creatine kinase isoenzyme transitions in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption, Arch. Biochem. Biophys. 191: 90.CrossRefGoogle Scholar
  42. Rose, I. A., and Warms, J. V. B., 1967, Mitochondrial hexokinase: Release, rebinding and location, J. Biol. Chem. 242: 1635.Google Scholar
  43. Saks, V. A., Kupriyanov, V. V., Elizarova, G. V., and Jacobus, W. E., 1980, Studies of energy transport in heart cells: The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation, J. Biol. Chem. 255: 755.Google Scholar
  44. Silver, R. B., Cole, R. D., and Cande, W. Z., 1980, Location of calcium sequestering vesicles, and identification of a creatine phosphokinase activity within the mitotic apparatus, Eur. J. Cell Biol. 22: 315.Google Scholar
  45. Strehler, E. E., Pelloni, G., Heizmann, C. W., and Eppenberger, H. M., 1979, M-protein in chicken cardiac muscle, Exp. Cell Res. 124: 39.CrossRefGoogle Scholar
  46. Trinick, J., and Lowey, S., 1977, M-protein from chicken pectoralis muscle: Isolation and characterization, J. Mol. Biol. 113: 343.CrossRefGoogle Scholar
  47. Turner, D. C., and Eppenberger, H. M., 1973, Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements, Enzyme 15: 224.Google Scholar
  48. Turner, D. C., Wallimann, T., and Eppenberger, H. M., 1973, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase, Proc. Natl. Acad. Sci. U.S.A. 70: 702.CrossRefGoogle Scholar
  49. Wallimann, T., Kuhn, H. J., Pelloni, G., Turner, D. C., and Eppenberger, H. M., 1978a, Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle, J. Cell Biol. 75: 318.CrossRefGoogle Scholar
  50. Wallimann, T., Turner, D. C., and Eppenberger, H. M., 1978b, Localization of creatine kinase isoenzyme in myofibrils. I. Chicken skeletal muscle, J. Cell Biol. 75: 297.CrossRefGoogle Scholar
  51. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79: 708.CrossRefGoogle Scholar
  52. Watts, D. C., 1973, Creatine kinase (adenosine-5’-triphosphate-creatine phosphotransferase) in: The Enzymes, 3rd ed., Vol. 8, p. 383.Google Scholar
  53. Weber, K., Rathke, P. C., and Osborn, M., 1978, Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 1820.CrossRefGoogle Scholar
  54. Williams, R. C., Jr., and Runge, M. S., 1980, Phosphorylation of a microtubule-associated protein by a neurofilament-associated kinase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1818 (abstract).Google Scholar
  55. Wilson, J. E., 1978, Ambiquitous enzymes: Variation in intracellular distribution as a regulatory mechanism, Trends Biochem. Sci. 3: 124.CrossRefGoogle Scholar
  56. Yokota, S., and Fahini, H. D., 1979, Filament bundles of prekeratin type in hepatocytes: Revealed by detergent extraction after glutaraldehyde fixation, Biol. Cellulaire 34: 119.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Barry S. Eckert
    • 1
  • Stephen J. Koons
    • 2
  • C. Richard Zobel
    • 2
  1. 1.Department of Anatomical SciencesState University of New York at BuffaloBuffaloUSA
  2. 2.Department of Biophysical SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations