Advertisement

Fine-Structural and Related Aspects of Nonmuscle-Cell Motility

  • Ian K. Buckley

Abstract

This review is concerned principally with the movements of cultured nonmuscle-tissue cells. Although these cells are known to contain tubulin and various other motility proteins, to date there is no single subcellular movement with a mechanism of action that is clearly explicable in terms of the better-understood microtubule-dynein or muscle-cell systems. The aim of this chapter is to examine relevant evidence, particularly that relating to the actin-myosin system. The review begins by considering the motility phenomena the mechanisms of which we are trying to elucidate. Bearing in mind that the better-understood cellmotility systems involve force-generating interactions between structures that are electron-microscopically observable, it has seemed important to review, in some detail, the cultured cells’ fine structure, concentrating on the microtubules and filamentous elements of the cytoplasmic ground substance. Then, since a better understanding of the microtubule-dynein and muscle-cell systems required identification of the proteins in their interacting components, it is planned to outline what is known at present of the protein identities of the various filamentous elements of cultured cells. Even when the aforementioned information is put together, however, it appears that no simple analogies with the microtubule-dynein or the actin-myosin system emerge. Indeed, with respect to the necessity for a codistribution of actin and myosin, there may be some serious deficiencies. And yet, as shown in certain model studies (including those derived from Physarum and Characeae), even though myosin cannot be identified ultrastructurally, there is good evidence that certain movements are generated by actin-myosin interactions. In a number of instances, this evidence has been greatly strengthened through the use of specific inhibitors, and it is suggested that extension of this work with cultured cells is an important future task.

Keywords

Intermediate Filament Stress Fiber Thin Filament Related Aspect Thick Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., 1964, The effect of p-chloromercuribenzoate on rotational protoplasmic streaming in plant cells, Protoplasma 58: 483–492.CrossRefGoogle Scholar
  2. Abercrombie, M., 1961, The bases of the locomotory behaviour of fibroblasts, Exp. Cell Res. Suppl. 8: 188–198.CrossRefGoogle Scholar
  3. Abercrombie, M., 1980, The crawling movement of metazoan cells, Proc. R. Soc. London Ser. B 207: 129–147.CrossRefGoogle Scholar
  4. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970a, The locomotion of fibroblasts in culture. I. Movements of the leading edge, Exp. Cell Res. 59: 393–398.CrossRefGoogle Scholar
  5. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970b, The locomotion of fibroblasts in culture. II. Ruffling, Exp. Cell Res. 60: 437–444.CrossRefGoogle Scholar
  6. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970c, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res. 62: 389–398.CrossRefGoogle Scholar
  7. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67: 359–367.CrossRefGoogle Scholar
  8. Abercrombie, M., Dunn, G. A., and Heath, J. P., 1976, Locomotion and contraction in non-muscle cells, in: Contractile Systems in Non-muscle Tissues ( S. V. Perry, A. Margreth, and R. S. Adelstein, eds.), pp. 3–11, Elsevier, Amsterdam.Google Scholar
  9. Adelman, M. R., and Taylor, E. W., 1969, Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry 8: 4976–4988.CrossRefGoogle Scholar
  10. Adelstein, R. S., Scordilis, S. P., and Trotter, J. A., 1979, The cytoskeleton and cell movement: General considerations, in: Methods and Achievements in Experimental Pathology, Vol. 8, The Cytoskeleton in Normal and Pathologic Processes (Cell Biology) ( G. Jasmin and M. Cantin, eds.), pp. 1–41, S. Karger, Basel.Google Scholar
  11. Albertini, D. F., and Anderson, E., 1977, Microtubule and microfilament rearrangements during capping of Con A receptors on cultured ovarian granulosa cells, J . Cell Biol. 73: 111–127.CrossRefGoogle Scholar
  12. Albertini, D. F., Berlin, R. D., and Oliver, J. M., 1977, The mechanism of concavalin A cap formation in leukocytes, J. Cell Sci. 26: 57–75.Google Scholar
  13. Albrecht-Buehler, G., 1976, The function of filopodia in spreading 3T3 mouse fibroblasts, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 247–264, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  14. Albrecht-Buehler, G., 1977a, Daughter 3T3 cells: Are they mirror images of each other?, J . Cell Biol. 72: 595–603.CrossRefGoogle Scholar
  15. Albrecht-Buehler, G., 1977b, Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin, Cell 12: 333–339.CrossRefGoogle Scholar
  16. Albrecht-Buehler, A., and Bushnell, A., 1979, The orientation of centrioles in migrating 3T3 cells, Exp. Cell Res. 120: 111–118.CrossRefGoogle Scholar
  17. Albrecht-Buehler, G., and Goldman, R. D., 1976, Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells, Exp. Cell Res. 97: 329–339.CrossRefGoogle Scholar
  18. Albrecht-Buehler, G., and Yarnell, M. M., 1973, A quantitation of movement of marker particles in the plasma membrane of 3T3 mouse fibroblasts, Exp. Cell Res. 78: 59–66.CrossRefGoogle Scholar
  19. Allen, N. S., 1974, Endoplasmic filaments generate the motive force for rotational streaming in Nitella, J. Cell Biol. 63: 270–287.CrossRefGoogle Scholar
  20. Allen, N. S., 1980, Cytoplasmic streaming and transport in the characean alga Nitella, Can. J . Bot. 58: 786–796.CrossRefGoogle Scholar
  21. Allen, N. S., and Allen, R. D., 1978, Cytoplasmic streaming in green plants, Annu. Rev. Biophys. Bioeng. 7: 497–526.CrossRefGoogle Scholar
  22. Allen, R. D., and Allen, N. S., 1978, Cytoplasmic streaming in amoeboid movement, Annu. Rev. Biophys. Bioeng. 7: 469–495.CrossRefGoogle Scholar
  23. Allen, R. D., and Taylor, D. L., 1975, The molecular basis of amoeboid movement, in: Molecules and Cell Movement ( S. Inoué and R. E. Stephens, eds.), pp. 239–257, Raven Press, New York.Google Scholar
  24. Alléra, A., and Wohlfarth-Bottermann, K. E., 1972, Weitreichende fibrilläre Protoplasmadif-ferenzierungen und ihre Bedeutung für die Protoplasmaströmung. IX. Aggregationszus-tände des Myosins und Bedingungen zur Enstehung von Myosinfilamenten in den Plasmodien von Physarum polycephalum, Cytobiologie 6: 261–286.Google Scholar
  25. Alléra, A., Beck, R., and Wohlfarth-Bottermann, K. E., 1971, Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. VIII. Identifizierung der Plasmafilamente von Physarum polycephalum als F-actin durch Anlagerung von Heavy Meromyosin in situ, Cytobiologie 4: 437–449.Google Scholar
  26. Allison, A. C., 1973, The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:109–143, Elsevier, Amsterdam.Google Scholar
  27. Allison, A. C., Davies, P., and De Petris, S., 1971, Role of contractile microfilaments in mac-rophage movement and endocytosis, Nature (London) New Biol. 232: 153–155.Google Scholar
  28. Aronson, J. F., 1965, The use of fluorescein-labeled heavy meromyosin for the cytological dem-onstration of actin, J. Cell Biol. 26: 293–298.CrossRefGoogle Scholar
  29. Badley, R. A., Lloyd, C. W., Woods, A., Carruthers, L., Allock, C., and Rees, D. A., 1978, Mechanisms of cellular adhesion. III. Preparation and preliminary characterization of adhesions, Exp. Cell Res. 117: 231–244.CrossRefGoogle Scholar
  30. Badley, R. A., Couchman, J. R., and Rees, D. A., 1980, Comparison of the cytoskeleton in migratory and stationary chick fibroblasts, J. Muscle Res. Cell Motil. 1: 5–14.CrossRefGoogle Scholar
  31. Bard, J. B. L., and Hay, E. D., 1975, The behavior of fibroblasts from the developing cornea: Morphology and movement in situ and in vitro, J. Cell Biol. 67: 400–418.CrossRefGoogle Scholar
  32. Begg, D. A., Rodewald, R., and Rebhun, L. I., 1978, The visualization of actin filament polarity in thin sections: Evidence for the uniform polarity of membrane-associated filaments, J. Cell Biol. 79: 846–852.CrossRefGoogle Scholar
  33. Behnke, O., 1976, The blood platelet, a potential smooth muscle cell, in: Contractile Systems in Non-muscle Tissues ( S. V. Perry, A. Margreth, and R. S. Adelstein, eds.), pp. 105–115, Elsevier, Amsterdam.Google Scholar
  34. Berlin, R. D., and Oliver, J. M., 1978, Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes, J. Cell Biol. 77: 789–804.CrossRefGoogle Scholar
  35. Bershadsky, A. D., Gelfand, V. I., Svitkina, T. M., and Tint, I. S., 1980, Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism, Exp. Cell Res. 127: 423–431.Google Scholar
  36. Bessis, M., 1956, Cytology of the Blood and Blood forming Organs, Grune and Stratton, New York. Bessis, M., 1973, Living Blood Cells and Their Ultrastructure, Springer-Verlag, New York.Google Scholar
  37. Wolosewick, J. J., and Porter, K. R., 1977, Observations on the morphological heterogeneity of WI-38 cells, Am. J . Anat. 149: 197–225.CrossRefGoogle Scholar
  38. Bradley, M. 0., 1973, Microfilaments and cytoplasmic streaming: Inhibition of streaming by cytochalasin, J. Cell Sci. 12: 327–343.Google Scholar
  39. Bragina, E. E., Vasiliev, J. M., and Gelfand, I. M., 1976, Formation of bundles of microfilaments during spreading of fibroblasts on the substrate, Exp. Cell Res. 97: 241–248.CrossRefGoogle Scholar
  40. Bray, D., 1970, Surface movements during the growth of single explanted neurons, Proc. Natl. Aced. Sci. U.S.A. 65: 905–910.CrossRefGoogle Scholar
  41. Bray, D., and Bunge, M. B., 1973, The growth cone in neurite extension, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:195–209, Elsevier, Amsterdam.Google Scholar
  42. Brinkley, B. R., and Porter, K. R. (eds.), 1977, International Cell Biology 1976–1977, The Rockefeller University Press, New York.Google Scholar
  43. Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1975, Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence, Proc. Natl. Acad. Sci. U.S.A. 72: 4981–4985.CrossRefGoogle Scholar
  44. Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1976, Tubulin antibodies as probes for microtubules in dividing and nondividing mammalian cells, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 435–456, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  45. Brinkley, B. R., Fistel, S. H., Marcum, J. M., and Pardue, R. L., 1980, Microtubules in cultured cells: Indirect immunofluorescent antibody staining with tubulin antibody, Int. Rev. Cytol. 63: 59–95.CrossRefGoogle Scholar
  46. Brown, S. S., and Spudich, J. A., 1979, Nucleation of polar actin filament assembly by a positively charged surface, J. Cell Biol. 80: 499–504.CrossRefGoogle Scholar
  47. Brown, S., Levinson, W., and Spudich, J. A., 1976, Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction, J. Supramol. Struct. 5: 119–130.CrossRefGoogle Scholar
  48. Bryan, J., and Kane, R. E., 1978, Separation and interaction of the major components of sea urchin actin gel, J. Mol. Biol. 125: 207–224.CrossRefGoogle Scholar
  49. Buckley, I. K., 1964, Phase contrast observations on the endoplasmic reticulum of living cells in culture, Protoplasma 59: 569–588.CrossRefGoogle Scholar
  50. Buckley, I. K., 1973, The lysosomes of cultured chick embryo cells: A correlated light and electron microscopic study, Lab Invest. 29: 411–421.Google Scholar
  51. Buckley, I. K., 1974, Subcellular motility: A correlated light and electron microscopic study using cultured cells, Tissue Cell 6: 1–20.CrossRefGoogle Scholar
  52. Buckley, I. K., 1975, Three dimensional fine structure of cultured cells: Possible implications for subcellular motility, Tissue Cell 7: 51–72.CrossRefGoogle Scholar
  53. Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells: A light and electron microscope study, Protoplasma 64: 349–380.CrossRefGoogle Scholar
  54. Buckley, I. K., and Porter, K. R., 1975, Electron microscopy of critical point dried whole cultured cells, J . Microsc. (Oxford) 104: 107–120.CrossRefGoogle Scholar
  55. Buckley, I. K., and Raju, T. R., 1976, Form and distribution of actin and myosin in non-muscle cells: A study using cultured chick embroy fibroblasts, J. Microsc. (Oxford) 107:129–149.Google Scholar
  56. Buckley, I. K., Raju, T. R., and Stewart, M., 1978, Heavy meromyosin labeling of intermediate filaments in cultured connective tissue cells, J . Cell Biol. 78: 644–652.CrossRefGoogle Scholar
  57. Buckley, I. K., Stewart, M., Raju, T. R., Irving, D. O., and Gordon, W. E., 1979, A reassessment of the distribution of F-actin in cultured cells, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 445–466. University of Tokyo Press, Tokyo.Google Scholar
  58. Buckley, I. K., Raju, T. R., and Stewart, M., 1980, Differences in intermediate filaments in trypsin-treated and non trypsin-treated cultured cells, J. Cell Biol. 87:176a.Google Scholar
  59. Buckley, I. K., Raju, T. R., and Stewart, M., 1981, Claims that intermediate filaments contain F-actin are unwarranted, J . Cell Biol. (accepted for publication).Google Scholar
  60. Bunge, M. B., 1973, Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture, J . Cell Biol. 56: 713–735.CrossRefGoogle Scholar
  61. Burgess, D. R., and Schroeder, T. E., 1979, The cytoskeleton and cytomusculature in embryogenesis—an overview, in: Methods and Achievements in Experimental Pathology, Vol. 8, The Cytoskeleton in Normal and Pathologic Processes (Cell Biology) ( G. Jasmin and M. Cantin, eds.), pp. 171–189, S. Karger, Basel.Google Scholar
  62. Burkl, B., Mahlmeister, C., Gröschel-Stewart, U., Chamley-Campbell, J., and Campbell, G., 1979, Production of specific antibodies to contractile proteins and their use in immunofluorescence microscopy. III. Their use against human smooth muscle myosin, Histochemistry 60: 135–143.CrossRefGoogle Scholar
  63. Burnside, B., 1978, Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina, J . Cell Biol. 78: 227–246.CrossRefGoogle Scholar
  64. Cande, W. Z., 1979, Vanadate inhibition of chromosome movement in lysed mitotic cells, J . Cell Biol. 79: 283a.Google Scholar
  65. Cande, W. Z., and Wolniak, S. M., 1978, Chromosome movement in lysed mitotic cells is inhibited by vanadate, J . Cell Biol. 79: 573–580.CrossRefGoogle Scholar
  66. Carter, S. B., 1965, Principles of cell motility: The direction of cell movement and cancer invasion, Nature (London) 208: 1183–1187.CrossRefGoogle Scholar
  67. Carter, S. B., 1967, Haptotaxis and the mechanism of cell motility, Nature (London) 213: 256–260.CrossRefGoogle Scholar
  68. Chamley-Campbell, J. Campbell, G. R., and Ross, R., 1979, The smooth muscle cell in culture, Physiol. Rev. 59:1–61.Google Scholar
  69. Chen, W. -T., 1979, Induction of spreading during fibroblast movement, J. Cell Biol. 81: 684–691.CrossRefGoogle Scholar
  70. Chen, W. -T., 1979, Induction of spreading during fibroblast movement, J. Cell Biol. 81: 684–691.CrossRefGoogle Scholar
  71. Clarke, M. A., and Spudich, J. A., 1977, Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination, Annu. Rev. Biochem. 46: 497–822.CrossRefGoogle Scholar
  72. Cloney, R. A., 1972, Cytoplasmic filaments and morphogenesis: Effects of cytochalasin B on contractile epidermal cells, Z. Zellforsch. 132: 167–192.CrossRefGoogle Scholar
  73. Cohen, I. 1979, The contractile system of blood platelets and its function, in: Methods and Achievements in Experimental Pathology Vol. 9, The Cytoskeleton in Normal and Pathologic Processes (Cell Physiopathology) (G. Jasmin and M. Cantin, eds.), pp. 40–86, S. Karger, Basel.Google Scholar
  74. Cohn, Z. A., and Fedorko, M. E., 1969, The formation and fate of lysosomes, in: Lysosomes in Biology and Pathology, Vol. 1 U. T. Dingle and H. B. Fell, eds.), pp. 43–63, North-Holland, Amsterdam.Google Scholar
  75. Trinick, J., and Offer, G., 1979, Cross-linking of actin filaments by heavy meromyosin, J . Mol. Biol. 133: 549–556.CrossRefGoogle Scholar
  76. Curtis, A. S. G., 1964, The mechanism of adhesion of cells to glass: A study by interference reflection microscopy, J. Cell Biol. 20: 199–215.CrossRefGoogle Scholar
  77. Dales, S., 1972, Concerning the universality of a microtubule antigen in animal cells, J. Cell Biol. 52: 748–754.CrossRefGoogle Scholar
  78. Davies, P., Bechtel, P., and Pastan, I., 1977, Filamin inhibits actin activation of heavy meromyosin ATPase, FEBS Lett. 77: 228–232.CrossRefGoogle Scholar
  79. Davies, W. A., and Stossel, T. P., 1977, Peripheral hyaline blebs (podosomes) of macrophages, J. Cell Biol. 75: 941–955.CrossRefGoogle Scholar
  80. DeBrabander, M., De Mey, J., Joniau, M., and Geuens, S., 1977, Immunocytochemical visualization of microtubules and tubulin at the light-and electron-microscopic level, J. Cell Sci. 28: 283–301.Google Scholar
  81. DeBrabander, M., Geuens, G., De Mey, J., and Jonaiau, M., 1979, Light microscopic and ultrastructural distribution of immunoreactive tubulin in mitotic mammalian cells, Biol. Cellulaire 34: 213–226.Google Scholar
  82. De Mey, J., Hoebeke, J., DeBrabander, M., Geuens, G., and Joniau, M., 1976, Immunoperoxidase visualization of microtubules and microtubular proteins, Nature (London) 264: 273–275.CrossRefGoogle Scholar
  83. De Petris, S., and Raff, M. C., 1973, Fluidity of the plasma membrane and its implications for cell movement, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:27–41Google Scholar
  84. Elsevier, Amsterdam DeRosier, D. J., and Edds, K. T., 1980, Evidence for fascin crosslinks between the actin filaments in coelomycyte filopodia, Exp. Cell Res. 126: 490–494.Google Scholar
  85. DeRosier, D., Mandelkow, E., Silliman, A., Tilney, L., and Kane, R., 1977, Structure of actin-containing filaments from two types of non-muscle cells, J . Mol. Biol. 113: 679–695.CrossRefGoogle Scholar
  86. Dornfeld, E. J., and Owczarzak, A., 1958, Surface responses in cultured fibroblasts elicited by ethylenediamine tetraacetic acid, J. Biophys. Biochem. Cytol. 4: 243–249.CrossRefGoogle Scholar
  87. Dunn, G. A., and Heath, J. P., 1976, A new hypothesis of contact guidance in tissue cells, Exp. Cell Res. 101: 1–14.CrossRefGoogle Scholar
  88. Eckert, B. S., Koons, S. J., Schantz, A. W., and Zobel, C. R., 1980, Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells, J . Cell Biol. 86: 1–5.CrossRefGoogle Scholar
  89. Edds, K. T., 1977, Dynamic aspects of filopodial formation by reorganization of microfilaments, J. Cell Biol. 73: 479–490.CrossRefGoogle Scholar
  90. Edds, K. T., 1979, Isolation and characterization of two forms of cytoskeleton, J. Cell Biol. 83: 109–115.CrossRefGoogle Scholar
  91. Elliot, A., Offer, G., and Burridge, K., 1976, Electron microscopy of myosin molecules from muscle and non-muscle sources, Proc. R. Soc. London Ser. B 193: 45–53.CrossRefGoogle Scholar
  92. Ellisman, M. H., and Porter, K. R., 1980, The microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J . Cell Biol. 87: 464–479.CrossRefGoogle Scholar
  93. Feramisco, J. R., 1979, Microinjection of fluorescently labeled a-actinin into living fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76: 3967–3971.CrossRefGoogle Scholar
  94. Fischer, A., 1946, Biology of Tissue Cells, Gyldendalske Boghandel, Copenhagen.Google Scholar
  95. Fleischer, M., and Wohlfarth-Bottermann, K. E., 1975, Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10: 339–365.Google Scholar
  96. Franke, W. W., Grund, C., Osborn, M., and Weber, K., 1978a, The intermediate-sized filaments in rat kangaroo PtK2 cells. I. Morphology in situ, Cytobiologie 17: 365–391.Google Scholar
  97. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1978b, The intermediate filaments in rat kangaroo PtK2 cells. II. Structure and composition of isolated filaments, Cytobiologie 17: 392–411.Google Scholar
  98. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1978c, Different intermediate-sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 5034–5038.CrossRefGoogle Scholar
  99. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1979a, Intermediate-sized filaments of human endothelial cells, J. Cell Biol. 81: 570–580.CrossRefGoogle Scholar
  100. Franke, W. W., Schmid, E., Weber, K., and Osborn, M., 1979b, HeLa cells contain intermediate-sized filaments of the prekeratin type, Exp. Cell Res. 118: 95–109.CrossRefGoogle Scholar
  101. Frederic, J., and Chevrement, M., 1952, Recherches sur les chondriósomes des cellules vivantes par la microscopie et la microcinematographie en contraste de phase, Arch. Biol. Paris 63: 109–131.Google Scholar
  102. Freed, J. J., and Lebowitz, M. M., 1970, The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol. 45:334–354.Google Scholar
  103. Fujiwara, K., and Pollard, T. D., 1976, Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells, J . Cell Biol. 71: 848–875.CrossRefGoogle Scholar
  104. Fujiwara, K., and Pollard, T. D., 1978, Simultaneous localization of myosin and tubulin in human tissue culture cells by double antibody staining, J . Cell Biol. 77 :182–195.Google Scholar
  105. Trinick, J., and Offer, G., 1979, Cross-linking of actin filaments by heavy meromyosin, J . Mol. Biol. 133: 549–556.CrossRefGoogle Scholar
  106. Gabbiani, G. (ed.), 1979, Methods and Achievements in Experimental Pathology, Vols. 8 and 9, The Cytoskeleton in Normal and Pathologic Processes (G. Jasmin and M. Cantin, series eds.), S. Karger, Basel.Google Scholar
  107. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ: A study of structure and function, J . Exp. Med. 135: 719–734.CrossRefGoogle Scholar
  108. Gard, D. L., Bell, P. B., and Lazarides, E., 1979, Coexistence of desmin and the fibroblastic intermediate filament subunit in muscle and nonmuscle cells: Identification and comparative peptide analysis, Proc. Natl. Acad. Sci. U.S.A. 76: 3894–3898.CrossRefGoogle Scholar
  109. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18: 193–205.CrossRefGoogle Scholar
  110. Gibbins, J. R., 1972, Metabolic requirements for epithelial migration as defined by the use of metabolic inhibitors in organ culture, Exp. Cell Res. 71: 329–337.CrossRefGoogle Scholar
  111. Gibbons, I. R. 1975. The molecular basis of flagellar motility in sea urchin spermatozoa, in: Molecules and Cell Movement (S. Inoué and R. E. Stephens, eds.), pp. 207–231, Raven Press, New York.Google Scholar
  112. Godman, G. C., and Miranda, A. F., 1978, Cellular contractibility and the visible effects of cytochalasin, in: Cytochalasins Biochemical and Cell Biological Aspects ( S. W. Tanenbaum, ed.), pp. 277–429, Elsevier, Amsterdam.Google Scholar
  113. Goldman, R. D., 1972, The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells, J . Cell Biol. 52: 246–254.CrossRefGoogle Scholar
  114. Goldman, R. D., 1975, The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in non-muscle cells, J . Histochem. Cytochem. 23: 529–542.CrossRefGoogle Scholar
  115. Goldman, R. D., and Follett, 1969, The structure of the major cell processes of isolated BHK21 fibroblasts, Exp. Cell Res. 57: 263–276.CrossRefGoogle Scholar
  116. Goldman, R. D., and Knipe, D. M., 1973, Functions of cytoplasmic fibers in nonmuscle cell motility, in: The Mechanism of Muscle Contraction, Cold Spring Harbor Symp. Quant. Biol. 37:523–534, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  117. Goldman, R. D., Lazarides, E., Pollack, R., and Weber, K., 1975, The distribution of actin in non-muscle cells: The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells, Exp. Cell Res. 90: 333–344.CrossRefGoogle Scholar
  118. Goldman, R., Pollard, T., and Rosenbaum, J. (eds.), 1976a, Cell Motility Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  119. Goldman, R. D., Schloss, J. A., and Starger, J. M., 1976b, Organizational changes of actinlike microfilaments during animal cell movement, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 217–245, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  120. Goldman, R. D., Yerna, M.J., and Schloss, J. A., 1976c, Localization and organization of microfilaments and related proteins in normal and virus-transformed cells, J. Supramol. Struct. 5: 155–183.CrossRefGoogle Scholar
  121. Goldman, R. D., Chojnacki, B., and Yerna, M.-J., 1979, Ultrastructure of microfilament bundles in baby hamster kidney (BHK-21) cells: The use of tannic acid, J. Cell Biol. 80: 759–766.Google Scholar
  122. Gordon, W. E., 1978, Immunofluorescent and ultrastructural studies of “sarcomeric” units in stress fibers of cultured non-muscle cells, Exp. Cell Res. 117: 253–250.CrossRefGoogle Scholar
  123. Gordon, W. E., Bushnell, A., and Burridge, K., 1978, Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum, Cell 13: 249–261.CrossRefGoogle Scholar
  124. Gotlieb, A. I., Heggeness, M. H., Ash, J. F., and Singer, S. J., 1979, Mechanochemical proteins, cell motility and cell-cell contacts: The localization of mechanochemical proteins inside cultured cells at the edge of an in vitro “wound, ” J. Cell. Physiol. 100: 563–578.CrossRefGoogle Scholar
  125. Hanson, J., and Huxley, H. E., 1955, The structural basis of contraction in striated muscle, in: Fibrous Proteins and Their Biological Significance (R. Brown and J. F. Danielli, eds.), pp. 228264, Cambridge University Press, Cambridge.Google Scholar
  126. Harris, A. K., 1973a, Cell surface movements related to cell locomotion, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:3–20, Elsevier, Amsterdam.Google Scholar
  127. Harris, A. K., 1973b, Location of cellular adhesions to solid substrata, Dev. Biol. 35: 97–114.CrossRefGoogle Scholar
  128. Harris, A., 1973c, Behavior of cultured cells on substrata of variable adhesiveness, Exp. Cell Res. 77: 285–297.CrossRefGoogle Scholar
  129. Hartwig, J. H., Davies, W. A., and Stossel, T. P., 1977, Evidence for contractile protein translocation in macrophage spreading, phagocytosis, and phagolysosome formation, J. Cell Biol. 75: 956–967.CrossRefGoogle Scholar
  130. Hatano, S., and Ohnuma, J., 1970, Purification and characterization of myosin A from the myxomycete plasmodium, Biochim. Biophys. Acta 205: 110–120.CrossRefGoogle Scholar
  131. Hatano, S., and Oosawa, F., 1966, Isolation and characterization of plasmodium actin, Biochim. Biophys. Acta 127: 488–498.CrossRefGoogle Scholar
  132. Hatano, S., Ishikawa, H., and Sato, H. (eds.), 1979, Cell Motility: Molecules and Organization, University of Tokyo Press, Tokyo.Google Scholar
  133. Heath, J. P., and Dunn, G. A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system: A correlated interference-reflexion and high-voltage electron-microscope study, J. Cell Sci. 29: 197–212.Google Scholar
  134. Heaysman, J. E. M., and Pegrum, S. M., 1973, Early contacts between fibroblasts: An ultrastructural study, Exp. Cell Res. 78: 71–78.CrossRefGoogle Scholar
  135. Heggeness, M. H., Wang, K., and Singer, S. J., 1977, Intracellular distributions of mechanochem-ical proteins in cultured fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74: 3883–3887.CrossRefGoogle Scholar
  136. Hepler, P. K., and Palevitz, B. A., 1974, Microtubules and microfilaments, Annu. Rev. Plant Physiol. 25: 309–362.CrossRefGoogle Scholar
  137. Herman, I. M., Maupin, P., and Pollard, T., 1979, Direct visualization of cytoplasmic myosin with purified ferritin-antimyosin, J. Cell Biol. 83: 321a.Google Scholar
  138. Heuser, J., and Evans, L., 1980, Three dimensional visualization of coated vesicle formation in fibroblasts, J. Cell Biol. 84: 560–583.CrossRefGoogle Scholar
  139. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212–234.CrossRefGoogle Scholar
  140. Higashi-Fujime, S., 1980, Active movement in vitro of bundles of microfilaments isolated from Nitella cell, J. Cell Biol. 87: 569–578.CrossRefGoogle Scholar
  141. Hinssen, H., D’Haese, J., Small, J. V., and Sobieszek, A., 1978, Mode of filament assembly of myosins from muscle and nonmuscle cells, J. Ultrastruct. Res. 64: 282–302.CrossRefGoogle Scholar
  142. Hirsch, J. G., 1962, Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis, J. Exp. Med. 116: 827–834.CrossRefGoogle Scholar
  143. Hitchcock, S., 1977, Regulation of motility in nonmuscle cells, J. Cell Biol. 74: 1–15.CrossRefGoogle Scholar
  144. Hodges, G. M., Livingston, D. C., and Franks, L. M., 1973, The localization of trypsin in cultured mammalian cells, J. Cell Sci. 12: 887–897.Google Scholar
  145. Hoffmann-Berling, H., 1954a, Adenosintriphosphat als Betriebsstoff von Zellbewegungen, Biochim. Biophys. Acta 14: 182–194.CrossRefGoogle Scholar
  146. Hoffmann-Berling, H., 19546, Die glycerin-wasserextraktierte Telophasezelle als Modell der Zytokinese, Biochim. Biophys. Acta 15: 332–339.Google Scholar
  147. Hoffmann-Berling, H., 1956, Die Kontraktile Eiweiss undifferenzierter Zellen, Biochim. Biophys. Acta 19: 453–463.CrossRefGoogle Scholar
  148. Hoffmann-Berling, H., 1964, Relaxation of fibroblast cells, in: Primitive Motile Systems in Cell Biology ( R. D. Allen and N. Kamiya, eds.), pp. 365–374, Academic Press, New York.CrossRefGoogle Scholar
  149. Holtfreter, J., 1948, Significance of the cell membrane in embryonic processes, Ann. N. Y. Acad. Sci. 49: 709–755.CrossRefGoogle Scholar
  150. Hubbard, B. D., and Lazarides, E., 1979, Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments, J . Cell Biol. 80: 166–182.CrossRefGoogle Scholar
  151. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J . Mol. Biol. 7: 281–301.CrossRefGoogle Scholar
  152. Huxley, H. E., 1971, The structural basis of muscular contraction, Proc. R. Soc. London Ser. B 178: 131–149.CrossRefGoogle Scholar
  153. Huxley, H. E., 1973, Muscular contraction and cell motility, Nature (London) 243: 445–449.CrossRefGoogle Scholar
  154. Hynes, R. O., and Destree, A. T., 1978, 10 nm filaments in normal and transformed cells, Cell 13: 151–163.Google Scholar
  155. Ingram, V. M., 1969, A side view of moving fibroblasts, Nature (London) 222: 641–644.CrossRefGoogle Scholar
  156. Inoué, S., and Stephens, R. E. (eds.), 1975, Molecules and Cell Movement, Raven Press, New York.Google Scholar
  157. Isenberg, G., and Wohlfarth-Bottermann, K. E., 1976, Transformation of cytoplasmic actin: Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin, Cell Tissue Res. 173: 495–528.CrossRefGoogle Scholar
  158. Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W., and Wohlfarth-Bottermann, K. E., 1976, Cytoplasmic actomyosin fibrils in tissue culture cells: Direct proof of contractability by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dissection, Cell Tissue Res. 166: 427–443.CrossRefGoogle Scholar
  159. Ishikawa, H., 1974, Arrowhead complexes in a variety of cell types, in: Exploratory Concepts in Muscular Dystrophy, Vol. II ( A. T. Milhorat, ed.), pp. 37–50, Excerpta Medica, Amsterdam.Google Scholar
  160. Ishikawa, H., 1979, Identification and distribution of intracellular filaments, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 417–444, University of Tokyo Press, Tokyo.Google Scholar
  161. Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate-sized filaments in developing skeletal muscle, J . Cell Biol. 38: 538–555.CrossRefGoogle Scholar
  162. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J . Cell Biol. 43: 312–328.CrossRefGoogle Scholar
  163. Izant, J. G., and McIntosh, J. R., 1980, Microtubule-associated proteins: A monoclonal antibody to MAP, binds to differentiated neurons, Proc. Natl. Acad. Sci. U.S.A. 77:4741–4745.Google Scholar
  164. Izzard, C. S., and Izzard, S., 1975, Calcium regulation of the contractile state of isolated mam-malian fibroblast cytoplasm, J . Cell Sci. 18: 241–256.Google Scholar
  165. Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contacts in living fibroblasts: An inter-ference reflexion study with an evaluation of the technique, J . Cell Sci. 21: 129–159.Google Scholar
  166. Izzard, C. S., and Lochner, L. R., 1980, Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflexion study, J . Cell Sci. 42: 81–116.Google Scholar
  167. Jarosch, R. 1958, Die Protoplasmafibrillen der Characeen, Protoplasma 50:93–108.Google Scholar
  168. Jorgensen, A. O., Subrahmanyan, L., Turnbull, C., and Kalnins, V. I., 1976, Localization of neurofilament protein in neuroblastoma cells by immunoflurescent staining, Proc. Natl. Acad. Sci. U.S.A. 73: 3192–3196.Google Scholar
  169. Kamitsubo, E., 1966a, Motile protoplasmic fibrils in cells of Characeae. I. Movement of fibrillar loops, Proc. Jpn. Acad. 42: 507–511.Google Scholar
  170. Kamitsubo, E., 1966b, Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar struc-ture and its bearing on protoplasmic streaming, Proc. Jpn. Acad. 42: 640–643.Google Scholar
  171. Kamitsubo, E., 1972a, Motile protoplasmic fibrils in cells of the Characeae, Protoplasma 74: 53–70.CrossRefGoogle Scholar
  172. Kamitsubo, E., 1972b, A “window technique” for detailed observation of characean cytoplasmic streaming, Exp. Cell Res. 74: 613–616.CrossRefGoogle Scholar
  173. Kamiya, N., 1959, Protoplasmic streaming, Protoplasmatologia VIII 3a :1–199.Google Scholar
  174. Kamiya, N., 1960, Physics and chemistry of protoplasmic streaming, Annu. Rev. Plant Physiol. 11: 323–340.CrossRefGoogle Scholar
  175. Kamiya, N., 1977, Molecular basis of motility: Introductory remarks, in: International Cell Biology 1976–1977 (B. R. Brinkley and K. R. Porter, eds.), pp. 361–366, The Rockefeller University Press, New York.Google Scholar
  176. Kane, R. E., 1975, Preparation and purification of polymerized actin from sea urchin egg extracts, J. Gell Biol. 66: 305–315.CrossRefGoogle Scholar
  177. Kane, R. E., 1980, Induction of either contractile or structural actin-based gels in sea urchin egg cytoplasmic extract, J . Cell BioL 86: 803–809.CrossRefGoogle Scholar
  178. Kato, T., and Tonomura, Y., 1977, Identification of myosin in Nitella flexilis J . Biochem. (Tokyo) 82: 777–782.Google Scholar
  179. Kersey, Y. M., Hepler, P. K., Palevitz, B. A., and Wessells, N. K., 1976, Polarity of actin filaments in characean algae, Proc. Natl.,Aced. Sci. U.S.A. 73: 165–167.CrossRefGoogle Scholar
  180. Kiehart, D. P., Inoué, S., and Mabuchi, I., 1977, Evidence that force production in chromosome movement does not involve myosin, J . Cell Biol. 75: 258a.CrossRefGoogle Scholar
  181. Kim, H., Binder, L. I., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro J . Cell Biol. 80: 266–276.CrossRefGoogle Scholar
  182. Kirschner, M. W., 1978, Microtubule assembly and nucleation, Int. Rev. Cytol. 54: 1–71.CrossRefGoogle Scholar
  183. Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility (a review), Proc. Natl. Acad. Sci. U.S.A. 75: 588–599.CrossRefGoogle Scholar
  184. Korn, E. D., Bowers, B., Batzri, S., Simmons, R., and Victoria, E. J., 1974, Endocytosis and exocytosis: Role of microfilaments and involvement of phospholipids in membrane fusion, J . Supramol. Struct. 2: 517–528.CrossRefGoogle Scholar
  185. Kuroda, K., 1964, Behavior of naked cytoplasmic drops isolated from plant cells, in: Primitive Motile Systems in Cell Biology ( R. D. Allen and N. Kamiya, eds.), pp. 31–40, Academic Press, New York.CrossRefGoogle Scholar
  186. Kuroda, K., and Kamiya, N., 1975, Active movement of Nitella chloroplasts in vitro, Proc. Jpn. Acad. 51: 774–777.Google Scholar
  187. Lazarides, E., 1975, Immunofluorescence studies on the structure of actin filaments in tissue culture cells, J . Histochem. Cytochem. 23: 507–528.CrossRefGoogle Scholar
  188. Lazarides, E., 1976, Actin, a-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202–219.CrossRefGoogle Scholar
  189. Lazarides, E., 1980, Intermrediate filaments as mechanical integrators of cellular space, Nature (London) 283: 249–256.CrossRefGoogle Scholar
  190. Lazarides, E., and Burridge, K., 1975, a-Actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6: 289–298.Google Scholar
  191. Lazarides, E., and Revel, J. P., 1979, The molecular basis of cell movement, Sci. Am. 240: 100–113.CrossRefGoogle Scholar
  192. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2268–2272.CrossRefGoogle Scholar
  193. Lewis, W. H., and Lewis, M. R., 1924, Behavior of cells in tissue cultures, in: General Cytology ( Lewis, W. H., and Lewis, M. R., ed.), pp. 385–447, The University of Chicago Press.Google Scholar
  194. Liem, R. K. H., Yen, S.-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissues, J. Cell Biol. 79: 637–645.CrossRefGoogle Scholar
  195. Lindberg, U., Carlsson, L., Markey, F., and Nyström, L. E., 1979, The unpolymerised form of actin in non-muscle cells, in: Methods and Achievements in Experimental Pathology, Vol. 8, The Cytoskeleton in Normal and Pathologic Processes (Cell Biology) ( G. Jasmin and M. Cantin, eds.), pp. 143–170, S. Karger, Basel.Google Scholar
  196. Lo, S. J., Tchen, T. T., and Taylor, J. D., 1980, Hormone-induced filopodium formation and the movement of pigment, carotenoid droplets, into newly formed filopodia, Cell Tissue Res. 210: 371–382.CrossRefGoogle Scholar
  197. Loewy, A. G., 1952, An actomyosin-like substance from the plasmodium of a myxomycete, J. Cell. Comp. Physiol. 40: 127–156.CrossRefGoogle Scholar
  198. Ludueiïa, M. A., and Wessells, N. K., 1973, Cell locomotion, nerve elongation, and microfilaments, Dev. Biol. 30: 427–440.CrossRefGoogle Scholar
  199. Mabuchi, I., and Okuno, M., 1977, The effect of myosin antibody on the division of starfish blastomeres, J . Cell Biol. 74: 251–263.CrossRefGoogle Scholar
  200. Malech, H. L., and Lentz, T. L., 1974, Microfilaments and epidermal cancer cells, J . Cell Biol. 60: 473–482.CrossRefGoogle Scholar
  201. Masters, C. J., 1978, Interactions between soluble enzymes and subcellular structure, Trends Biochem. Sci. 3: 206–208.CrossRefGoogle Scholar
  202. Matsumura, F., and Hatano, S., 1978, Reversible superprecipitation and bundle formation of plasmodium actomyosin, Biochim, Biophys. Acta 533: 511–523.CrossRefGoogle Scholar
  203. Mazia, D., Schatten, G., and Sale, W., 1975, Adhesion of cells to surfaces coated with polylysine, J. Cell Biol. 66: 198–200.CrossRefGoogle Scholar
  204. McDonald, K. L., Edwards, M. K., and McIntosh, J. R., 1979, Cross sectional structure of the central mitotic spindle of Diatomia vulgare: Evidence for specific interactions between antiparallel microtubules, J. Cell Biol. 83: 443–461.CrossRefGoogle Scholar
  205. McIntosh, J. R., Hepler, P. K., and Van Wie, D. G., 1969, Model for mitosis, Nature (London) 224: 659–663.CrossRefGoogle Scholar
  206. McNutt, N. S., Culp, L. A., and Black, P. H., 1971, Contact-inhibited, revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study, J . Cell Bwl. 50: 691–708.CrossRefGoogle Scholar
  207. McNutt, N. S., Culp, L. A., and Black, P. H., 1973, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untrans-formed, transformed and revertant Balb/C 3T3 cells, J . Cell Biol. 56: 412–428.CrossRefGoogle Scholar
  208. Meeusen, R. L., and Cande, W. Z., 1979a, A comparison of cytokinesis and mitosis in per-meabilized dividing cells, J . Cell Biol. 79: 376a.Google Scholar
  209. Meeusen, R. L., and Cande, W. Z., 1979b, N-Ethylmaleimide-modified heavy meromyosin: A probe for actomyosin interactions, J. Cell Biol. 82: 57–65.CrossRefGoogle Scholar
  210. Mohri, H., 1976, The function of tubulin in motile systems, Biochim. Biophys. Acta 456: 85–127.CrossRefGoogle Scholar
  211. Mooseker, M. S., and Tilney, L. G., 1975, Organization of an actin filament-membrane complex: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells, J . Cell Biol. 67: 725–743.CrossRefGoogle Scholar
  212. Morton, D. J., Clarke, F. M., and Masters, C. J., 1977, An electron microscope study of the interaction between fructose diphosphate aldolase and actin-containing filaments, J. Cell Biol. 74: 1016–1023.Google Scholar
  213. Munro, T. R., Daniel, M. R., and Dingle, J. T., 1964, Lysosomes in Chinese hamster fibroblasts in culture, Exp. Cell Res. 35: 515–530.CrossRefGoogle Scholar
  214. Nachmias, V. T., 1972, Electron microscope observations on myosin from Physarum polycephalum, J. Cell Biol. 52: 648–663.CrossRefGoogle Scholar
  215. Nachmias, V. T., Huxley, H. E., and Kessler, D., 1970, Electron microscope observations on actomyosin and actin preparations from Physarum polycephalum and on their interaction with heavy meromyosin subfragment 1 from muscle myosin, J . Mol. Biol. 50: 83–90.CrossRefGoogle Scholar
  216. Nachmias, V., Sullender, J. S., and Fallon, J. R., 1979, Effects of local anesthetics on human platelets: Filopodial suppression and endogenous proteolysis, Blood 53: 63–72.Google Scholar
  217. Nagai, R., and Hayama, T, 1979, Ultrastructural aspects of cytoplasmic streaming in characean cells, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 321–337, University of Tokyo Press, Tokyo.Google Scholar
  218. Nagai, R., and Kato, T., 1975, Cytoplasmic filaments and their assembly into bundles in Physarum plasmodium, Protoplasma 86: 141–158.CrossRefGoogle Scholar
  219. Nagai, R., and Rebhun, L. I., 1966, Cytoplasmic filaments in streaming Nitella cells, J . Ultrastruct. Res. 14: 571–589.CrossRefGoogle Scholar
  220. Nagai, R., Yoshimoto, Y., and Kamiya, K., 1978, Cyclic production of tension force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology, J . Cell Sci. 33: 205–225.Google Scholar
  221. Nakai, J., 1964, The movement of neurons in tissue culture, in: Primitive Motile Systems in Cell Biology ( R. D. Allen and N. Kamiya, eds.), pp. 377–385, Academic Press, New York.CrossRefGoogle Scholar
  222. Nelson, G. A., and Revel, J. P., 1975, Scanning electron microscopic study of cell movements in the corneal endothelium of the avian embryo, Dev. Biol. 42: 315–333.CrossRefGoogle Scholar
  223. Nicolson, G. L., and Poste, G., 1976, The cancer cell: Dynamic aspects and modification in cell-surface organization, N. Engl. J. Med. 295: 197–203, 253–258.CrossRefGoogle Scholar
  224. Trinick, J., and Offer, G., 1979, Cross-linking of actin filaments by heavy meromyosin, J . Mol. Biol. 133: 549–556.CrossRefGoogle Scholar
  225. Ohashi, M., and Nonomura, Y., 1979, Disappearance of smooth muscle thick filaments during K+ contraction, Cell Struct. Function 4: 325–329.CrossRefGoogle Scholar
  226. Ohtsuki, I., Manzi, R. M., Palade, G. E., and Jamieson, J. D., 1978, Entry of macromolecular tracers into cells fixed with low concentrations of aldehydes, Biol. Cellulaire 31: 119–126.Google Scholar
  227. Osborn, M., and Weber, K., 1976, Tubulin specific antibody and the expression of microtubules in 3T3 cells after attachment to a substratum: Further evidence for the polar growth of cytoplasmic microtubules in vivo, Exp. Cell Res. 103: 331–340.CrossRefGoogle Scholar
  228. Osborn, M., and Weber, K., 1979, Microfilament-associated proteins in tissue culture cells viewed by stereo immunofluorescence microscopy, Eur. J. Cell Biol. 20: 28–36.Google Scholar
  229. Osborn, M., Franke, W. W., and Weber, K., 1977, Visualization of a system of filaments 7–10 nm thick in cultured cells of an epethelioid line (PtK2) by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 74: 2490–2494.CrossRefGoogle Scholar
  230. Osborn, M., Born, T., Koitsch, H. J., and Weber, K., 1978a, Stereo immunofluorescence microscopy. I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments, Cell 14: 477–488.Google Scholar
  231. Osborn, M., Webster, R. E., and Weber, K., 1978b, Individual microtubules viewed by immuno-fluorescence and electron microscopy in the same PtK2 cell, J. Cell Biol. 77: R27 - R34.Google Scholar
  232. Osborn, M., Franke, W., and Weber, K., 1980, Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double im-munofluorescence microscopy: Vimentin and cytokeratin fibers in cultured epithelial cells, Exp. Cell Res. 125: 37–46.CrossRefGoogle Scholar
  233. Otto, J. J., Kane, R. E., and Bryan, J., 1979, Formation of filopodia in coelomocytes: Localization of fascin, a 58,000 dalton actin cross-linking protein, Cell 17: 285–293.CrossRefGoogle Scholar
  234. Otto, J. J., Kane, R. E., and Bryan, J., 1980, Redistribution of actin and fascin in sea urchin eggs after fertilization, Cell Motil. 1: 31–40.Google Scholar
  235. Painter, R. G., and McIntosh, A. T., 1979, The regional association of actin and myosin with sites of particle phagocytosis, J . Supramol. Struct. 12: 369–384.CrossRefGoogle Scholar
  236. Palevitz, B. A., Ash, J. F., and Hepler, P. K., 1974, Actin in the green alga, Nitella, Proc. Natl. Acad. Sci. U.S.A. 71: 363–366.CrossRefGoogle Scholar
  237. Panner, B. J., and Honig, C. R., 1967, Filament ultrastructure and organization in vertebrate smooth muscle: Contraction hypothesis based on localization of actin and myosin, J. Cell Biol. 35: 303–321.CrossRefGoogle Scholar
  238. Panner, B. J., and Honig, C. R., 1970, Locus and state of aggregation of myosin in tissue sections of vertebrate smooth muscle, J. Cell Biol. 44: 52–61.CrossRefGoogle Scholar
  239. Pepe, F. A., 1976, Detectability of antibody in fluorescence and electron microscopy, in Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 337–346, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  240. Perdue, J. F., 1973, The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts, J . Cell Biol. 58: 265–283.CrossRefGoogle Scholar
  241. Pickett-Heaps, J. D., 1967, Ultrastructure and differentiation in Chara sp. I. Vegetative cells, Aust. J . Biol. Sci. 20: 539–551.Google Scholar
  242. Pollack, R., and Rifkin, D., 1975, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6: 495–506.CrossRefGoogle Scholar
  243. Pollard, T. D., 1975, Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins, in: Molecules and Cell Movement ( S. Inoué and R. E. Stephens, eds.), pp. 259–285, Raven Press, New York.Google Scholar
  244. Pollard, T. D., 1976, Cytoskeletal functions of cytoplasmic contractile proteins, J. Supramol. Struct. 5: 317–334.CrossRefGoogle Scholar
  245. Pollard, T. D., and Korn, E. D., 1973, Electron microscopic identification of actin associated with isolated amoeba plasma membranes, J . Biol. Chem. 248: 448–450.Google Scholar
  246. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Crit. Rev. Biochem. 2: 1–65.CrossRefGoogle Scholar
  247. Pollard, T. D., Fujiwara, K., Nierderman, R., and Maupin-Szamier, P., 1976, Evidence for the role of cytoplasmic actin and myosin in cellular structure and motility, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 689–724, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  248. Pomerat, C. M., 1953, Rotating nuclei in tissue cultures of adult human nasal mucosa, Exp. Cell Res. 5: 191–196.CrossRefGoogle Scholar
  249. Pomerat, C. M., 1961, Cinematography, indispensable tool for cytology, Int. Rev. Cytol. 11: 307–334.CrossRefGoogle Scholar
  250. Porter, K. R., 1953, Observations on a submicroscopic basophilic component of cytoplasm, J. Exp. Med. 97: 727–750.CrossRefGoogle Scholar
  251. Porter, K. R., 1976, Introduction: Motility in cells, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1–28, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  252. Porter, K. R., Byers, H. R., and Ellisman, M. H., 1979, The cytoskeleton, in: The Neurosciences: Fourth Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 703–722, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  253. Puszkin, S., and Schook, W., 1979, The role of the cytoskeleton in neuron activity, in: Methods and Achievements in Experimental Pathology, Vol. 9, The Cytoskeleton in Normal and Pathologic Processes (Cell Physiopathology) ( G. Jasmin and M. Cantin, eds.), pp. 87–111, S. Karger, Basel.Google Scholar
  254. Radice, G. P., 1980a, The spreading of epithelial cells during wound closure in Xenopus larvae, Dev. Biol. 76: 26–46.CrossRefGoogle Scholar
  255. Radice, G. P., 1980b, Locomotion and cell substratum contacts of Xenopus epidermal cells in vitro and in situ J . Cell Sci. 44: 201–223.Google Scholar
  256. Rappaport, R., 1971, Cytokinesis in animal cells, Int. Rev. Cytol. 31: 169–213.CrossRefGoogle Scholar
  257. Rappaport, R., 1975, Establishment and organization of the cleavage mechanism, in: Molecules and Cell Movement (S. Inoué and R. E. Stephens, eds.), pp. 287–303Google Scholar
  258. Raven Press, New York. Rash, J. E., Biesele, J. J., and Gey, G. O., 1970, Three classes of filaments in cardiac differentia-tion, J . Ultrastruct. Res. 33: 408–435.CrossRefGoogle Scholar
  259. Rash, J. E., McDonald, T. F., Sachs, H. G., and Ebert, J. D., 1972, Muscle-like arrays in a fibroblast line, Nature (London) New Biol. 237: 160.Google Scholar
  260. Rathke, P. C., Osborn, M., and Weber, K., 1979, Immunological and ultrastructural characterization of microfilament bundles: Polygonal nets and stress fibers in an established cell line, Eur. J . Cell Biol. 19: 40–48.Google Scholar
  261. Reaven, E. P., and Axline, S. G., 1973, Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages, J. Cell Biol. 59: 12–27.CrossRefGoogle Scholar
  262. Rebhun, L. I., 1972, Polarized intracellular particle transport: Saltatory’ movements and cytoplasmic streaming, Int. Rev. Cytol. 32: 93–137.CrossRefGoogle Scholar
  263. Revel, J. P., 1974, Scanning electron microscope studies of cell surface morphology and labeling, in situ and in vitro, in: Scanning Electron Microscopy 1974 (0. Johari and I. Corvin, eds.), pp. 541–547, I.I.T. Research Institute, Chicago, Illinois.Google Scholar
  264. Revel, J. P., and Wolken, K., 1973, Electron microscope investigations of the underside tof cells in culture, Exp. Cell Res. 78: 1–14.CrossRefGoogle Scholar
  265. Revel, J. P., Hoch, P., and Ho, D., 1974, Adhesion of culture cells to their substratum, Exp. Cell Res. 84: 207–218.CrossRefGoogle Scholar
  266. Rodewald, R., Newman, S. B., and Karnovsky, M. J., 1976, Contraction of isolated brush borders from the intestinal epithelium, J. Cell Biol. 70: 541–554.CrossRefGoogle Scholar
  267. Rose, G. G., 1957, Microkinetospheres and V.P. satellites of pinocytic cells observed in tissue cultures of Gey’s strain HeLa with phase contrast cinematographic techniques, J . Biophys. Biochem. Cytol. 3: 697–704.CrossRefGoogle Scholar
  268. Roth, T. F., and Porter, K. R., 1964, Yolk protein uptake in the oocyte of the mosquito, Aedes aegypti L., J. Cell Biol. 20: 313–332.CrossRefGoogle Scholar
  269. Rovensky, Yu. A., and Slavnaya, I. L., 1974, Spreading of fibroblast-like cells on grooved surfaces, Exp. Cell Res. 84: 199–206.CrossRefGoogle Scholar
  270. Sanger, J. W., 1975, Changing patterns of actin localization during cell division, Proc. Natl. Acad. Sci. U.S.A. 72: 1913–1916.CrossRefGoogle Scholar
  271. Sanger, J. W., and Sanger, J. M., 1979, The cytoskeleton and cell division, in: Methods and Achievements in Experimental Pathology, Vol. 8, The Cytoskeleton in Normal and Pathologica Pro-cesses (Cell Biology) (G. Jasmin and M. Cantin, eds. ), pp. 110–142.Google Scholar
  272. S. Karger, Basel. Schlaepfer, W. W., and Lynch, R. G., 1977, Immunofluorescent studies of neurofilaments in the rat and human peripheral and central nervous system, J . Cell Biol. 74: 241–250.Google Scholar
  273. Schmitt, F. 0., 1969, Fibrous proteins and neuronal dynamics, in: Cellular Dynamics of the Neuron, Symp. Mi. Soc. Cell Biol. ( S. H. Barondes, ed.), pp. 95–111, Academic Press, New York.Google Scholar
  274. Schreiner, G. F., Fujiwara, K., Pollard, T. D., and Unanue, E. R., 1977, Redistribution of myosin accompanying capping of surface Ig, J . Exp. Med. 145: 1393–1398.CrossRefGoogle Scholar
  275. Schroeder, T. E., 1973, Actin in dividing cells: Contractile ring filaments bind heavy meromyosin, Proc. Natl. Acad. Sci. U.S.A. 70: 1688–1692.CrossRefGoogle Scholar
  276. Schroeder, T. E., 1975, Dynamics of the contractile ring, in: Molecules and Cell Movement ( S. Inoué and R. E. Stephens, eds.), pp. 305–332, Raven Press, New York.Google Scholar
  277. Schroeder, T. E., 1976, Actin in dividing cells: Evidence for its role in cleavage but not mitosis, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 265–277, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  278. Shimmen, T., 1978, Dependency of cytoplasmic streaming on intracellular ATP and Mgz+ concentrations, Cell Struct. Function 3: 113–121.CrossRefGoogle Scholar
  279. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46: 669–722.CrossRefGoogle Scholar
  280. Small, J. V., and Celis, J. E., 1978, Filament arrangements in negatively stained cultured cells: The organization of actin, Cytobiologie 16: 308–325.Google Scholar
  281. Small, J. V., and Sobieszek, A., 1977, Studies on the function and composition of the 10-nm (100A) filaments of vertebrate smooth muscle, J . Cell Sci. 23: 243–268.Google Scholar
  282. Snyder, J. A., and McIntosh, J. R., 1976, Biochemistry and physiology of microtubules, Annu. Rev. Biochem. 45: 699–720.CrossRefGoogle Scholar
  283. Sobieszek, A., 1972, Cross-bridges on self-assembled smooth muscle myosin filaments, J . Mol. Biol. 70: 741–744.CrossRefGoogle Scholar
  284. Spooner, B. S., Yamada, K. M., and Wessells, N. K., 1971, Microfilaments and cell locomotion, J. Cell Biol. 49: 595–613.CrossRefGoogle Scholar
  285. Spooner, B. S., Ash, J. F., Wrenn, J. T., Frater, R. B., and Wessells, N. K., 1973, Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements, Tissue Cell 5: 37–46.CrossRefGoogle Scholar
  286. Starger, J. M., and Goldman, R. D., 1977, Isolation and preliminary characterization of 10-nm filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 74: 2422–2426.CrossRefGoogle Scholar
  287. Starger, J. M., Brown, W. E., Goldman, A. E., and Goldman, R. D., 1978, Biochemical and immunological analysis of rapidly purified 10 nm filaments from baby hamster kidney (BHK-21) cells, J. Cell Biol. 78: 93–109.CrossRefGoogle Scholar
  288. Stendahl, O. I., and Stossel, T. P., 1980, Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction, Biochem. Biophys. Res. Commun. 92: 675–681.CrossRefGoogle Scholar
  289. Stendahl, O. I., Hartwig, J. W., Brotschi, E. A., and Stossel, T. P., 1980, Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis, J. Cell Biol. 84: 215–224.CrossRefGoogle Scholar
  290. Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry and function, Physiol. Rev. 56: 709–777.Google Scholar
  291. Stewart, P. R., and Spudich, J. A., 1979, Structural states of Dictyostelium myosin, J . Supramol. Struct. 12: 1–14.CrossRefGoogle Scholar
  292. Strahs, K. R., and Berns, M. W., 1979, Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart, Exp. Cell Res. 119: 31–45.CrossRefGoogle Scholar
  293. Strangeways, T. S. P., and Canti, R. G., 1927, The living cell in vitro, as shown by darkground illumination and the changes induced in such cells by fixing reagents, Q. J. Microsc. Sci. 281: 1–14.Google Scholar
  294. Sun, T.-T., Shih, C., and Green, H., 1979, Keratin cytoskeletons, in epithelial cells of internal organs, Proc. Natl. Acad. Sci. U.S.A. 76: 2813–2817.CrossRefGoogle Scholar
  295. Taylor, A. C., 1966, Microtubules in the microspikes and cortical cytoplasm of isolated cells, J . Cell Biol. 28: 155–168.CrossRefGoogle Scholar
  296. Taylor, D. L., 1976, Motile model systems of amoeboid movements, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 797–821, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  297. Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56: 57–144.CrossRefGoogle Scholar
  298. Taylor, D. L., and Wang, Y.-L., 1980, Fluorescently labeled molecules as probes of the structure and function of living cells, Nature (London) 284: 405–410.CrossRefGoogle Scholar
  299. Tazawa, M., 1964, Studies on Nitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions, Plant Cell Physiol. 5: 33–43.Google Scholar
  300. Tazawa, M., 1968, Motive force of the cytoplasmic streaming in Nitella, Protoplasma 65: 207–222.CrossRefGoogle Scholar
  301. Tilney, L. G., 1975a, Actin filaments in the acrosomal reaction of Limulus sperm, J . Cell Biol. 64: 289–310.CrossRefGoogle Scholar
  302. Tilney, L. G., 1975b, The role of actin in nonmuscle cell motility, in: Molecules and Cell Movement ( S. Inoué and R. E. Stephens, eds.), pp. 339–386, Raven Press, New York.Google Scholar
  303. Tilney, L. G., 1977, Actin: Its association with membranes and the regulation of its polymerization, in: International Cell Biology 1976–1977 (B. R. Brinkley and K. R. Porter, eds.), pp. 388–402, The Rockefeller University Press, New York.Google Scholar
  304. Toh, B. H., Yildiz, A., Sotelo, J., Osung, O., Holborrow, E. J., and Fairfax, A., 1979, Distribution of actin and myosin in muscle and non-muscle cells, Cell Tissue Res. 199: 117–126.CrossRefGoogle Scholar
  305. Trinick, J., and Offer, G., 1979, Cross-linking of actin filaments by heavy meromyosin, J . Mol. Biol. 133: 549–556.CrossRefGoogle Scholar
  306. Trinkaus, J. P., 1976, On the mechanism of metazoan cell movements, in: The Cell Surface in Animal Embryogenesis and Development ( G. Poste and G. L. Nicolson, eds.), pp. 225–329, North-Holland, Amsterdam.Google Scholar
  307. Tsukita, S., and Ishikawa, H., 1976, Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons, J . Electron Microsc. 25: 141–149.Google Scholar
  308. Tsukita, S., and Ishikawa, H., 1979, Morphological evidence for the involvement of the smooth endoplasmic reticulum in axonal transport, Brain Res. 174: 315–318.CrossRefGoogle Scholar
  309. Tsukita, S., and Ishikawa, H., 1980, The movement of membranous organelles in axons: Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84: 513–530.CrossRefGoogle Scholar
  310. Vallee, R. B., and Borisy, G. G., 1977, Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin, J. Biol. Chem. 252: 377–382.Google Scholar
  311. Vasiliev, J. M., and Gelfand, I. M., 1976, Effects of colcemid on morphogenetic processes and locomotion of fibroblasts, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 279–304, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  312. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements of BHK-21 cells, J. Cell Biol. 79: 708–726.CrossRefGoogle Scholar
  313. Wang, E., Cross, R. K., and Choppin, P. W., 1979, Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia, J. Cell Biol. 83: 320–337.CrossRefGoogle Scholar
  314. Wang, K., and Singer, S. J., 1977, Interaction of filamin with F-actin in solution, Proc. Natl. Acad. Sci. U.S.A. 74: 2021–2025.CrossRefGoogle Scholar
  315. Wang, K., Ash, J. F., and Singer, S. J., 1975, Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 72: 4483–4486.CrossRefGoogle Scholar
  316. Weber, K., and Groeschel-Stewart, U., 1974, Antibody to myosin: The specific visualization of myosin-containing filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71: 4561–4564.CrossRefGoogle Scholar
  317. Weber, K., Pollack, R., and Bibring, T., 1975, Antibody against tubulin: The specific visualization of cytoplasmic microtubules in tissue culture cells, Proc. Natl. Acad. Sci. U.S.A. 72: 459–463.CrossRefGoogle Scholar
  318. Weber, K., Rathke, P. C., and Osborn, M., 1978, Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 1820–1824.CrossRefGoogle Scholar
  319. Webster, R. E., Henderson, D., Osborn, M., and Weber, K., 1978, Three-dimensional electron microscopic visualization of the cytoskeleton of animal cells: Immunoferritin identification of actin-and tubulin-containing structures, Proc. Natl. Acad. Sci. U.S.A. 75: 5511–5515.CrossRefGoogle Scholar
  320. Weihing, R. R., 1978, In vitro interactions of cytochalasins with contractile proteins, in: Cytochalasins—Biochemical and Cell Biological Aspects (S. W. Tannenbaum, ed.), pp. 431–444, Elsevier, Amsterdam.Google Scholar
  321. Weihing, R. R., 1979, The cytoskeleton and plasma membrane, in: Methods and Achievements in Experimental Pathology, Vol. 8, The Cytoskeleton in Normal and Pathologic Process (Cell Biology) ( G. Jasmin and M. Cantin, eds.), pp. 43–109, S. Karger, Basel.Google Scholar
  322. Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomena, North-Holland, Amsterdam.Google Scholar
  323. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.CrossRefGoogle Scholar
  324. Wessells, N. K., Spooner, B. S., and Luduena, M. A., 1973, Surface movements, microfilaments and cell locomotion, in: Locomotion of Tissue Cells, Ciba Found. Symp. 14:53–77, Elsevier, AmsterdamGoogle Scholar
  325. White, J. G., and Gerrard, J. M., 1979, Interaction of microtubules and microfilaments in platelet contractile physiology, in: Methods and Achievements in Experimental Pathology, Vol. 9, The Cytoskeleton in Normal and Pathologic Processes (Cell Physiopathology) ( G. Jasmin and M. Cantin, eds.), pp. 1–39, S. Karger, Basel.Google Scholar
  326. Williamson, R. E., 1972, A light-microscope study of the action of cytochalasin B on the cells and isolated cytoplasm of the Characeae J . Cell Sci. 10: 811–819.Google Scholar
  327. Williamson, R. E., 1974, Actin in the alga, Chara corallina, Nature (London) 248: 801–802.CrossRefGoogle Scholar
  328. Williamson, R. E., 1975, Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytochalasin B, J. Cell Sci. 17: 655–668.Google Scholar
  329. Williamson, R. E., 1978, Cytochalasin B stabilizes the sub-cortical actin bundles of Chara against a solution of low ionic strength, Cytobiologie 18: 107–113.Google Scholar
  330. Williamson, R. E., 1979a, Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina, Eur. J. Cell Biol. 20: 177–183.Google Scholar
  331. Williamson, R. E., 1979b, Motile models of plant cells and the immunofluorescent localization of actin in a motile Chara cell model, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 339–346, University of Tokyo Press, Tokyo.Google Scholar
  332. Williamson, R. E., 1980, Actin in motile and other processes in plant cells, Can. J. Bot. 58: 766–772.CrossRefGoogle Scholar
  333. Wohlfarth-Bottermann, K. E., 1962, Weitreichende fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung, Protoplasma 54: 514–539.CrossRefGoogle Scholar
  334. Wohlfarth-Bottermann, K. E., and Fleischer, M., 1976, Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation, Cell Tissue Res. 165: 327–344.CrossRefGoogle Scholar
  335. Wolosewick, J. J., and Porter, K. R., 1976, Stereo high-voltage electron microscopy of whole cells of the human diploid line WI-38, Am. J. Anat. 147: 303–323.Google Scholar
  336. Wolosewick, J. J., and Porter, K. R., 1977, Observations on the morphological heterogeneity of WI-38 cells, Am. J . Anat. 149: 197–225.CrossRefGoogle Scholar
  337. Wolosewick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance: Artefact or reality, J. Cell Biol. 82: 114–139.Google Scholar
  338. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1970, Axon growth: Roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. U.S.A. 66: 1206–1212.CrossRefGoogle Scholar
  339. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J . Cell Biol. 49: 614–635.CrossRefGoogle Scholar
  340. Yano, M., Yamada, T., and Shimizu, H., 1978, Studies on the chemo-mechanical conversion in artificially produced streamings. I. Reconstruction of a chemo-mechanical system from acto-HMM of rabbit skeletal muscle, J . Biochem. (Tokyo) 84: 277–283.Google Scholar
  341. Yotsuyanagi, Y., 1953, Recherches sur les phenomenes moteurs dans les fragments de protoplasme isolés. II. Movements divers déterminés par la condition de milieu, Cytologia 18: 202–217.CrossRefGoogle Scholar
  342. Zigmond, S. H., Otto, J. J., and Bryan, J., 1979, Organization of myosin in a submembranous sheath in well-spread human fibroblasts, Exp. Cell Res. 119: 205–219.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Ian K. Buckley
    • 1
  1. 1.Department of Experimental PathologyJohn Curtin School of Medical Research, The Australian National UniversityCanberra CityAustralia

Personalised recommendations