Advertisement

Myosin Phosphorylation

A Biochemical Mechanism for Regulating Contractility
  • Roger Cooke
  • James T. Stull

Abstract

The regulation of many biochemical pathways by reversible covalent phosphorylation of key enzymes and nonenzymic proteins is recognized as an important type of mechanism involved in numerous intracellular processes. These processes include glycogenolysis, gluconeogenesis, glycolysis, lipolysis, nucleic acid transcription, protein translation, and contractile-protein interactions (Adelstein and Eisenberg, 1980; M. Barany and K. Barany, 1980; Krebs and Beavo, 1979; Stull, 1980; Stull et al., 1980a,b). Protein phosphorylation consists of the transfer of the terminal phosphate of a nucleoside triphosphate (usually ATP) to serine or threonine amino acid residues in a particular protein and is catalyzed by a group of enzymes referred to as protein kinases. The introduction of a charged phosphate moiety into a protein may result in marked changes in the enzymatic properties and therefore may provide an important means for regulating particular metabolic pathways or physiological processes. Protein kinases may be classified according to the specific agent that serves to activate and serve as second messengers. These would include the cyclic AMP (cAMP)-dependent protein kinases, cGMP-dependent protein kinases, and calcium-dependent protein kinases. The cyclic-nucleotidedependent protein kinases appear to be multifunctional in their protein-substrate recognition, whereas the calcium-dependent protein kinases such as phosphorylase kinase and myosin light-chain kinase are more restricted.

Keywords

ATPase Activity Rabbit Skeletal Muscle Actomyosin ATPase Nonmuscle Cell Myosin Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R. S., and Conti, M. A., 1975, Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity, Nature (London) 256: 597.CrossRefGoogle Scholar
  2. Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49: 921.CrossRefGoogle Scholar
  3. Adelstein, R. S., Conti, M. A., Hathaway, D. R., and Klee, C. B., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’:5’-monophosphatedependent protein kinase, J. Biol. Chem. 253: 8347.Google Scholar
  4. Adelstein, R. S., Conti, M. A., Rappaport, L., and Eaton, C. R., 1980, Regulation of myosin light chain kinase in muscle and nonmuscle cells, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2117.Google Scholar
  5. Aksoy, M. O., Dillon, P. F., and Murphy, R. A., 1980, Phosphorylation of the 20,000 dalton myosin light chain (LC20) regulates shortening velocity in vascular smooth muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2043.Google Scholar
  6. Baker, P. F., and Knight, D. E., 1978, A high-voltage technique for gaining rapid access to the interior of secretory cells, J. Physiol. 284: 30 P.Google Scholar
  7. Barany, K., Barany, M., Gillis, J. M., and Kushmerick, M., 1979, Phosphorylationdephosphorylation of the 18,000 dalton light chain of myosin during the contraction-relaxation cycle of frog muscle, J. Biol. Chem. 254: 3617.Google Scholar
  8. Barany, M., and Barany, K., 1980, Phosphorylation of the myofibrillar proteins, Annu. Rev. Physiol. 42: 275.CrossRefGoogle Scholar
  9. Baron, J. T., Barany, M., and Barany, K., 1979, Phosphorylation of the 20,000 dalton light chain of myosin of intact arterial smooth muscle in rest and in contraction, J. Biol. Chem. 254: 4954.Google Scholar
  10. Blumenthal, D. K., and Stull, J. T., 1980, Activation of skeletal muscle myosin light chain kinase by Cat+ and calmodulin, Biochemistry 19: 5608.CrossRefGoogle Scholar
  11. Bose, R., Hinton, A., and King, G. M., 1979, Temperature-and Mg-ATP-dependent regulation of Ca++ sensitivity of smooth muscle actomyosin ATPase, Am. J. Physiol. 237: C213.Google Scholar
  12. Bremel, R. D., 1974, Myosin linked calcium regulation in vertebrate smooth muscle, Nature (London) 252: 405.CrossRefGoogle Scholar
  13. Bremel, R. D., Sobieszek, A., and Small, J. V., 1977, Regulation of actin-myosin interactions in vertebrate smooth muscle, in: Biochemistry of Smooth Muscle ( N. L. Stephens, ed.), p. 533, University Park Press, Baltimore.Google Scholar
  14. Cassidy, P., Hoar, P. E., and Kerrick, W. G. L., 1979, Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by ATP-y-S, J. Biol. Chem. 254: 1 1148.Google Scholar
  15. Chacko, S., Conti, M. A., and Adelstein, R. S., 1977, Effect of phosphorylation of smooth muscle myosin on actin activation and Ca“ regulation, Proc. Natl. Acad. Sci. U.S.A. 74: 129.CrossRefGoogle Scholar
  16. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207: 19.CrossRefGoogle Scholar
  17. Conti, M. A., and Adelstein, R. S., 1980, Phosphorylation by cAMP-dependent protein kinase regulates myosin light chain kinase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1569.Google Scholar
  18. Crooks, R., and Cooke, R., 1977, Tension generation by threads of contractile proteins, J. Gen.Physiol. 69: 37.CrossRefGoogle Scholar
  19. Dabrowska, R., and Hartshorne, D. J., 1978, A Ca“ and modulator-dependent myosin light chain kinase from non-muscle cells, Biochem. Biophys. Res. Commun. 85: 1352.Google Scholar
  20. Dabrowska, R., Aromatorio, D., Sherry, J. M. F., and Hartshorne, D. J., 1977, Composition of the myosin light chain kinase from chicken gizzard, Biochem. Biophys. Res. Commun. 78:1263.Google Scholar
  21. Daniel, J. L., and Adelstein, R. S., 1976, Isolation and properties of platelet myosin light chain kinase, Biochemistry 15: 2370.CrossRefGoogle Scholar
  22. Daniel, J. L., and Molish, I. R., 1980, Phosphorylation of myosin in intact platelets in response to external stimuli, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2048.Google Scholar
  23. DeLanerolle, P., and Stull, J. T., 1980, Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle, J. Biol. Chem. 255: 9993.Google Scholar
  24. DiSalvo, J., Gruenstein, E., and Silver, P., 1978, Ca’ dependent phosphorylation of bovine aortic actomyosin, Proc. Soc. Exp. Biol. Med. 158: 410.Google Scholar
  25. Driska, S. P., and Hartshorne, D. J., 1975, The contractile proteins of smooth muscle: Properties and components of a Ca“ sensitive actomyosin from chicken gizzard, Arch. Biochem. Biophys. 167: 203.CrossRefGoogle Scholar
  26. Ebashi, S., 1978, Ca ion and muscle contraction, in: Ions—Cyclic Nucleotides—Cholinergy U. S. Stoclet, ed.), pp. 81–98, Pergamon Press, New York.Google Scholar
  27. Ebashi, S., 1980, Regulation of muscle contraction, Proc. R. Soc. London B 207: 259.CrossRefGoogle Scholar
  28. Edman, K. A. P., Elzinga, G., and Noble, M. I. M., 1978, Enhancement of mechanical perfor- mance by stretch during tetanic contractions of vertebrate skeletal muscle fibers, J. Physiol. 281: 139.Google Scholar
  29. England, P. J., Stull, J. T., and Krebs, E. G., 1972, Dephosphorylation of the inhibitor component of troponin by phosphorylase phosphatase, J. Biol. Chem. 247: 5275.Google Scholar
  30. Frearson, N., and Perry, S. V., 1975, Phosphorylation of the light chain components of myosin from cardiac and red skeletal muscles, Biochem. J. 151: 99.Google Scholar
  31. Frearson, N., Focant, B. W. W., and Perry, S. V., 1976, Phosphorylation of a light chain component of myosin from smooth muscle, FEBS Lett. 63: 27.CrossRefGoogle Scholar
  32. Gorecka, A., Aksoy, M. O., and Hartshorne, P. J., 1976, The effect of phosphorylation of gizzard myosin on actin activation, Biochem. Biophys. Res. Commun. 68: 325.CrossRefGoogle Scholar
  33. Harrington, W. F., 1979, Contractile proteins of muscle, in: The Proteins ( H. Neurath and R. L. Hill, eds.), pp. 246–409, Academic Press, New York.Google Scholar
  34. Hartshorne, P. J., Abrams, L., Aksoy, M., Dabrowska, R., Driska, S., and Sharkey, E., 1977, Molecular basis for the regulation of smooth muscle actomyosin, in: Biochemistry of Smooth Muscle ( N. L. Stephens, ed.), p. 513, University Park Press, Baltimore.Google Scholar
  35. Hathaway, D. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. Sci. U.S.A. 76: 1653.CrossRefGoogle Scholar
  36. Hidaka, H., Naka, M., and Yamaki, T., 1979, Effect of novel specific myosin light chain kinase inhibitors on Cat+-activated Mg’-ATPase of chicken gizzard actomyosin, Biochem. Biophys. Res. Commun. 90: 694.CrossRefGoogle Scholar
  37. Hidaka, H., Yamaki, T., Totsuka, T., and Asano, M., 1979, Selective inhibitors of Cat+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction, Mol. Pharmacol. 15: 49.Google Scholar
  38. Hidaka, H., Yamaki, T., Naka, M., Tanaka, T., Hayashi, H., and Kobayashi, R., 1980, Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium stimulated protein kinase and ATPase, Mol. Pharmacol. 17: 66.Google Scholar
  39. High, C. W., and Stull, J. T., 1980, Phosphorylation of myosin light chain in perfused hearts, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 276.Google Scholar
  40. Hirata, M., Mikawa, T., Nonomura, Y., and Ebashi, S., 1980, Cat+ regulation in vascular smooth muscle. II. Ca binding of aorta leiotonin, J. Biochem. 87: 369.Google Scholar
  41. Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S., 1979, Chicken gizzard: Relation between calcium-activated phosphorylation and contraction, Science 204: 503.CrossRefGoogle Scholar
  42. Holroyde, M. J., Potter, J. D., and Solaro, R. J., 1979, The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins, J. Biol. Chem. 254: 6478Google Scholar
  43. Holroyde, M. J., Small, D. A. P., Howe, E., and Solaro, R. J., 1979, Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation, Biochim. Biophys. Acta 587: 628.CrossRefGoogle Scholar
  44. Huszar, G., and Bailey, P., 1979, Relationship between actin-myosin interaction and myosin light chain phosphorylation in human placental smooth muscle, Am. J. Obstet. Gynecol. 135: 718.Google Scholar
  45. Jakes, R., Northrop, F., and Kendrick-Jones, J., 1976, Calcium binding regions of myosin “regu-latory” light chains, FEBS Lett. 70: 229.CrossRefGoogle Scholar
  46. Jeacocke, S. A., and England, P. J., 1980, Phosphorylation of myosin light chains in perfused rat hearts, Biochem. Soc. Trans. 8: 364.Google Scholar
  47. Kamm, K. E., Dillon, P. F., Aksoy, M. O., Walmsley, J. G., and Murphy, R. A., 1980, Cellular time course of myosin light chain (LC) phosphorylation and activation of arterial smooth muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2043.Google Scholar
  48. Kerrick, W. G. L., Hoar, P. E., and Cassidy, P. S., 1980, Calcium activated tension: The role of myosin light chain phosphorylation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1558.Google Scholar
  49. Klee, C. B., Crouch, T. H., and Richman, P. G., 1980, Calmodulin, Annu. Rev. Biochem. 49: 489.CrossRefGoogle Scholar
  50. Kopp, S. J., and Barany, M., 1979, Phosphorylation of the 19,000 dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotropic agents, J. Biol. Chem. 254: 1 2007.Google Scholar
  51. Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility, Proc. Natl. Acad. Sci. U.S.A. 75: 588.CrossRefGoogle Scholar
  52. Korn, E. D., and Gadasi, H., 1980, Differential localization of Acanthamoeba myosins I and II, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1660.Google Scholar
  53. Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48: 923.CrossRefGoogle Scholar
  54. Kuczmarski, E. R., and Spudich, J. A., 1980, Phosphorylation of myosin heavy chain from Dictyostelium regulates self assembly, J. Cell Biol. 87: A227.CrossRefGoogle Scholar
  55. Lebowitz, E., and Cooke, R., 1979, Phosphorylation of uterine smooth muscle myosin permits actin-activation, J. Biochem. 85: 1489.Google Scholar
  56. Lehman, W., and Szent-Gyorgyi, A. G., 1975, Distribution of actin control and myosin control in the animal kingdom, J. Gen. Physiol. 66: 1.CrossRefGoogle Scholar
  57. Lehman, W., Kendrick-Jones, J., and Szent-Gyorgyi, A. G., 1972, Myosin-linked regulatory systems: Comparative studies, Cold Spring Harbor Symp. Quant. Biol. 37: 319.CrossRefGoogle Scholar
  58. Manning, D. R., and Stull, J. T., 1979, Myosin light chain phosphorylation and phosphorylase a activity in rat extensor digitorum longus muscle, Biochem. Biophys. Res. Commun. 90: 164CrossRefGoogle Scholar
  59. Manning, D. R., DiSalvo, J., and Stull, J. T., 1980, Protein phosphorylation: Quantitative analysis in vivo and in intact cell systems, Mol. Cell. Endocrinol. 19: 1–19.CrossRefGoogle Scholar
  60. Marston, S. B., and Taylor, E. W., 1980, Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles, J. Mol. Biol. 139: 573.CrossRefGoogle Scholar
  61. Marston, S. B., Trevett, R. M., and Walters, M., 1980, Calcium ion-regulated thin filaments from vascular smooth muscle, Biochem. J. 185: 355.Google Scholar
  62. Maruta, H., and Korn, E. D., 1977, Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mgt+-ATPase activity of Acanthamoeba myosin I, J. Biol. Chem. 252: 8329.Google Scholar
  63. Maruta, H., Gadasi, H., Collins, J. H., and Korn, E. D., 1978, The isolated heavy chain of an Acanthamoeba myosin contains full enzymatic activity, J. Biol. Chem. 253: 6297.Google Scholar
  64. Means, A. R., and Dedman, J. R., 1980, Calmodulin: An intracellular receptor, Nature (London) 285: 73.CrossRefGoogle Scholar
  65. Mikawa, T., Nonomura, Y., and Ebashi, S., 1977, Does phosphorylation of myosin light chain have direct relation to regulation of smooth muscle?, J. Biochem. 82: 1789.Google Scholar
  66. Morgan, M., Perry, S. V., and Ottaway, J., 1976, Myosin light chain phosphatase, Biochem. J. 157: 687.Google Scholar
  67. Mrwa, U., and Ruegg, J. C., 1975, Myosin-linked calcium regulation in vascular smooth muscle, FEBS Lett. 60: 81.CrossRefGoogle Scholar
  68. Muhlrad, A., and Oplatka, A., 1977, Phosphorylation of fibroblast myosin, FEBS Lett. 77: 37CrossRefGoogle Scholar
  69. Murphy, R. A., Aksoy, M. O., and P. F. Dillon, 1980, Regulation in vascular smooth muscle: Ca++-dependent myosin light chain (LC) phosphorylation mediates cross-bridge cycling rates, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:1817.Google Scholar
  70. Nairn, A. C., and Perry, S. V., 1979, Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle, Biochem. J. 179: 89.Google Scholar
  71. Onishi, H., and Watanabe, S., 1979, Chicken gizzard heavy meromyosin that retains the two light-chain components, including a phosphorylatable one, J. Biochem. 85: 457.Google Scholar
  72. Onishi, H., Suzuki, H., Nakamura, K., Takahashi, K., and Watanabe, S., 1978, Adenosine triphosphatase activity and “thick filament” formation of chicken gizzard myosin in low salt media, J. Biochem. 83: 835.Google Scholar
  73. Pato, M. D., and Adelstein, R. S., 1980, Dephosphorylation of myosin light chain and myosin kinase by two different phosphatases from smooth muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1826.Google Scholar
  74. Pemrick, S., 1980, The phosphorylated LZ light chain of skeletal myosin is a modifier of the actomyosin ATPase, J. Biol. Chem. 255: 8836.Google Scholar
  75. Perrie, W. T., Smillie, L. B., and Perry, S. V., 1973, A phosphorylated light chain component of myosin from skeletal muscle, Biochem. J. 135: 151.Google Scholar
  76. Pires, E. M. V., and Perry, S. V., 1977, Purification and properties of myosin light chain kinase from fast skeletal muscle, Biochem. J. 167: 137.Google Scholar
  77. Pires, E., Perry, S. V., and Thomas, M. A. W., 1974, Myosin light chain kinase, a new enzyme from striated muscle, FEBS Lett. 41: 292.CrossRefGoogle Scholar
  78. Rappaport, L., and Adelstein, R. S., 1980, Phosphorylation of canine cardiac muscle myosin light chain kinase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2041.Google Scholar
  79. Ritz-Gold, C. J., Cooke, R., Blumenthal, D. K., and Stull, J. T., 1980, Light chain phosphorylation alters the conformation of skeletal muscle myosin, Biochem. Biophys. Res. Commun. 93: 209.CrossRefGoogle Scholar
  80. Saida, K., and Nonomura, Y., 1978, Characteristics of Cat+- and Mgt+-induced tension develop-ment in chemically skinned smooth muscle fibers, J. Gen. Physiol. 72: 1.CrossRefGoogle Scholar
  81. Scordilis, S. P., and Adelstein, R. S., 1977, Myoblast myosin phosphorylation is a prerequisite for actin-activation, Nature (London) 268: 558.CrossRefGoogle Scholar
  82. Scordilis, S. P., and Adelstein, R. S., 1978, A comparative study of the myosin light chain kinases from myoblast and muscle sources, J. Biol. Chem. 253: 9041.Google Scholar
  83. Seidel, J. C., 1978, Chymotryptic heavy meromyosin from gizzard myosin: A proteolytic fragment with the regulatory properties of the intact myosin, Biochem. Biophys. Res. Commun. 85: 107.CrossRefGoogle Scholar
  84. Seidel, J. C., 1979, Activation by actin of ATPase activity of chemically modified gizzard myosin without phosphorylation, Biochem. Biophys. Res. Commun. 89: 958.CrossRefGoogle Scholar
  85. Seidel, J. C., 1980, Fragmentation of gizzard myosin by chymotrypsin and papain, the effects on ATPase activity, and the interaction with actin, J. BioL Chem. 255: 4355.Google Scholar
  86. Sherry, J. M., and Hartshorne, D. J., 1980, Smooth muscle myosin light chain phosphatase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1827.Google Scholar
  87. Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., and Hartshorne, D. J., 1978, Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin, Biochemistry 17: 4411.CrossRefGoogle Scholar
  88. Sheterline, P., 1980, Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Cat+, Biochem. Biophys. Res. Commun. 93: 194.CrossRefGoogle Scholar
  89. Silver, P. J., and DiSalvo, J., 1979, Adenosine 3’:5’-monophosphate mediated inhibition of myosin light chain kinase phosphorylation in bovine aortic actomyosin, J. BioL Chem. 254: 9951.Google Scholar
  90. Sirivastava, S., Cooke, R., and Wikman-Coffelt, J., 1980, Studies on the role of myosin light chain-LC2 in tension generation, Biochem. Biophys. Res. Commun. 92: 1.CrossRefGoogle Scholar
  91. Small, J. V., and Sobieszek, A., 1977, Ca regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000 Mr light chain of myosin, Eur. J. Biochem. 76: 521.CrossRefGoogle Scholar
  92. Sobieszek, A., and Bremel, R. D., 1975, Preparation and properties of vertebrate smooth-musde myofibrils and actomyosin, Eur. J. Biochem. 55: 49.CrossRefGoogle Scholar
  93. Sobieszek, A., and Small, J. V., 1977, Regulation of the actin-myosin interaction in vertebrate smooth muscle: Activation via a myosin light chain kinase and the effect of tropomyosin, J. Mol. Biol. 112: 559.CrossRefGoogle Scholar
  94. Stossel, T. P., 1978, Contractile proteins in cell structure and function, Annu. Rev. Med. 29: 427.CrossRefGoogle Scholar
  95. Stull, J. T., 1980, Phosphorylation of contractile proteins in relation to muscles function, Adv. Cyclic Nucleotide Res. 13: 39.Google Scholar
  96. Stull, J. T., Brostrom, C. O., and Krebs, E. G., 1972, Phosphorylation of the inhibitor component of troponin by phosphorylase kinase, J. Biol. Chem. 247: 5272.Google Scholar
  97. Stull, J. T., Blumenthal, D. K., deLanerolle, P., High, C. W., and Manning, D. R., 1978, Phosphorylation and regulation of contractile proteins, in: Advances in Pharmacological Therapy U. C. Stoclet, ed.), pp. 171–180, Pergamon Press, New York.Google Scholar
  98. Stull, J. T., Blumenthal, D. K., and Cooke, R. 1980, Regulation of contraction by myosin phosphorylation: A comparison between smooth and skeletal muscles, Biochem. Pharmacol. 29: 2537.CrossRefGoogle Scholar
  99. Stull, J. T., Manning, D. R., High, C. W., and Blumenthal, D. K., 1980b, Phosphorylation of contractile proteins in heart and skeletal muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1552Google Scholar
  100. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S., 1978, Structure and function of chicken gizzard myosin, J. Biochem. 84: 1529.Google Scholar
  101. Tanaka, T., Naka, M., and Hidaka, H., 1980, Activation of myosin light chain kinase by trypsin, Biochem. Biophys. Res. Commun. 92: 313.CrossRefGoogle Scholar
  102. Taylor, E. W., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Crit. Rev. Biochem. 6: 103.CrossRefGoogle Scholar
  103. Trotter, J. A., and Adelstein, R. S., 1979, Macrophage myosin: Regulation of actin-activated ATPase activity by phosphorylation of the 20,000 dalton light chain, J. Biol. Chem. 254: 8781.Google Scholar
  104. Walsh, M. P., Vallet, B., Autric, F., and Demaille, J. G., 1979, Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase, J. Biol. Chem. 254: 1 2136.Google Scholar
  105. Walsh, M. P., Cavadore, J. C., Vallet, B., and Demaille, J. G., 1980a, Calmodulin-dependent myosin light chain kinases from cardiac and smooth muscle: A comparative study, Can. J. Biochem. 58: 299.CrossRefGoogle Scholar
  106. Walsh, M. P., Vallet, B., Cavadore, J. C., and Demaille, J. G., 1980b, Homologous calcium binding proteins in the activation of skeletal, cardiac and smooth muscle myosin light chain kinases, J. Biol. Chem. 255: 335.Google Scholar
  107. Wang, J. H., and Waisman, D. M., 1979, Calmodulin and its role in the second messenger system, Curr. Top. Cell. Regul. 15: 47.Google Scholar
  108. Watterson, D. M., Mendel, P. A., and Vanaman, T. C., 1980, Comparison of calcium-modulated proteins from vertebrate brains, Biochemistry 19: 2672.CrossRefGoogle Scholar
  109. Weber, A., and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Physiol. Rev. 53: 612.Google Scholar
  110. Weiss, B., and Levin, R. M., 1978, Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents, Adv. Cyclic Nucleotide Res. 9: 285.Google Scholar
  111. Winegrad, S., 1979, Electromechanical coupling in heart muscle, in: Handbook of Physiology: The Cardiovascular System ( R. M. Berne and N. Sperelakis, eds.), pp. 393–428, American Physiological Society Bethesda, Maryland.Google Scholar
  112. Wolff, D. J., and Brostrom, C., 1979, Properties and functions of calcium-dependent regulator protein, Adv. Cyclic Nucleotide Res. 11: 27.Google Scholar
  113. Yazawa, M., and Yagi, K., 1978, Purification of modulator-deficient myosin light chain kinase by modulator protein-Sepharose affinity chromatography, J. Biochem. 84: 1259.Google Scholar
  114. Yerna, M. J., Aksoy, M. O., Hartshorne, D. J., and Goldman, R. D., 1978, BHK21 yosin:Isolation, biochemical characterization and intracellular localization, J. Cell Sci. 31: 411Google Scholar
  115. Yerna, M. J., Dabrowska, R., Hartshorne, D. J., and Goldman, R. D., 1979, Calcium-sensitive regulation of actin-myosin interactions in baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 76: 184.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Roger Cooke
    • 1
  • James T. Stull
    • 2
  1. 1.Department of Biochemistry/Biophysics and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA
  2. 2.Moss Heart Center and Department of PharmacologyUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations