The Sarcoplasmic Reticulum of Skeletal and Cardiac Muscle

  • Giuseppe Inesi


The sarcoplasmic reticulum (SR) of striated muscle plays an important role in control of contractile activity, providing an intracellular sink for calcium during relaxation, and a source for calcium release on membrane excitation. SR and excitation-contraction coupling have been the subjects of several detailed reviews (Tada et al., 1978; DeMeis and Vianna, 1979; Inesi, 1979; Martonosi, 1972; Hasselbach, 1964; MacLennan and Holland, 1975; Weber, 1966; Ebashi and Endo, 1968; Fuchs, 1974; Fabiato and Fabiato, 1979; Endo, 1977; Caputo, 1978). This chapter contains a general description of the system, and is then focused on selected findings that are used to support the author’s views on the mechanisms of calcium uptake and calcium release.


Sarcoplasmic Reticulum Calcium Uptake Cardiac Muscle Calcium Release Calcium Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson-Cedergren, E., 1959, Sarcotubular system, J. Ultrastruct. Res. Suppl 1: 126.Google Scholar
  2. Ariki, M., and Boyer, P., 1980, Characterization of medium inorganic phosphate-water exchange catalyzed by sarcoplasmic reticulum vesicles, Biochemistry 19: 2001.Google Scholar
  3. Armstrong, C., Bezanilla, F., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol raacetic acid, Biochim. Biophys. Acta 267: 605.CrossRefGoogle Scholar
  4. Ashley, C., and Ridgway, E., 1970, On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres, J. Physiol. (London) 209:105.Google Scholar
  5. Banerjee, R., Epstein, M., Kandrach, M., Zimniak, P., and Racker, E., 1979, A new method of preparing Ca++-ATPase from sarcoplasmic reticulum: Extraction with octylglucoside, Membr. Biochem 2: 283.CrossRefGoogle Scholar
  6. Barlogie, B., Hasselbach, W., and Makinose, M., 1971, Activation of calcium efflux by ADP and inorganic phosphate, FEBS Lett. 12: 267.CrossRefGoogle Scholar
  7. Bastide, F., Meissner, G., Fleischer, S., and Post, R. L., 1973, Similarity of the active site of phosphorylation of the ATPase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in sarcoplasmic reticulum of muscle, J. Biol. Chem 248: 8385.Google Scholar
  8. Baylor, S., and Oetiker, H., 1975, Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum, Nature (London ) 253: 97.CrossRefGoogle Scholar
  9. Beil, F., Chak, D., and Hasselbach, W., 1977, Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes, Eur. J. Biochem. 81:151.CrossRefGoogle Scholar
  10. Bendall, J., 1953, Further observations on a factor (the “Marsh” factor) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it, J. Physiol. (London) 121: 232.Google Scholar
  11. Bezanilla, F., and Horowicz. P., 1975, Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A, J. Physiol. (London) 246: 709.Google Scholar
  12. Bezanilla, F., Caputo, C., Gonzalez-Serratos, H., and Venosa, R., 1972, Sodium dependence of the inward spread of activation in isolated twitch muscle fibers of the frog. J. Physiol. (London) 223: 507.Google Scholar
  13. Bianchi, C., 1968, Pharmacological actions on excitation-contraction coupling in striated muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 27:126.Google Scholar
  14. Caputo, C., 1978, Excitation and contraction processes in muscle, Annu. Rev. Biophys. Bioeng 7: 63.CrossRefGoogle Scholar
  15. Caputo, C., and Dipolo, R., 1973, Ionic diffusion delays in the transverse tubules of frog twitch muscle fibres, J. Physiol. (London) 229: 547.Google Scholar
  16. Chaloub, R., Guimaraes-Motta, H., Verjovski-Almeida, S., DeMeis, L., and Inesi, G., 1979, Sequential reactions in Pi utilization for ATP synthesis by sarcoplasmic reticulum, J. Biol. Chem 254: 94 - 64.Google Scholar
  17. Chandler, W., Rakowski, R., and Schneider, M., 1976, A non-linear voltage dependent charge movement in frog skeletal muscle, J. Physiol. (London) 254: 245.Google Scholar
  18. Chevallier, J., and Butow, R„ 1971, Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle, Biochemistry 10: 27 - 33.Google Scholar
  19. Chiesi, M., and mesi, G., 1979, The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum, J. Biol. Chem 254: 10 - 370.Google Scholar
  20. Chiesi, M., and mesi, G., 1980, Adenosine 5’-triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles, Biochemistry 19: 2912.CrossRefGoogle Scholar
  21. Chiesi, M., Peterson, S., and Acuto, O., 1978, Reconstitution of a Ca++-transporting ATPase system from Triton X-100-solubilized sarcoplasmic reticulum, Arch. Biochem. Biophys 189: 132.CrossRefGoogle Scholar
  22. Coan, C., and mesi, G., 1977, Calcium dependent effect of ATP on spin-labeled sarcoplasmic reticulum, J. Biol. Chem 252: 3044.Google Scholar
  23. Coan, C., Verjovski-Almeida, S., and mesi, G., 1979, Ca++ regulation of conformational states in the transport cycle of spin-labeled sarcoplasmic reticulum ATPase, J. Biol. Chem 254: 2968.Google Scholar
  24. Costantin, L., 1970, The role of sodium current in the radial spread of contraction in frog muscle fibers, J. Gen. Physiol 55: 703.CrossRefGoogle Scholar
  25. Costantin, L., and Podolsky, R., 1967, Depolarization of the internal membrane system in the activation of frog skeletal muscle, J. Gen. Physiol 50: 1101.CrossRefGoogle Scholar
  26. Costantin, L., and Taylor, R., 1973, Graded activation in frog muscle fibers, J. Gen. Physiol 61: 424.CrossRefGoogle Scholar
  27. Dani, A., Cittadini, A., and mesi, G., 1979, Calcium transport and contractile activity in dissociated mammalian heart cells, Am. J. Physiol 237: 147.Google Scholar
  28. Deamer, D., and Baskin, R., 1969, Ultrastructure of sarcoplasmic reticulum preparations, J. Cell Biol 42: 296.CrossRefGoogle Scholar
  29. Dean, W., and Tanford, C., 1977, Reactivation of lipid-depleted Ca++-ATPase by a nonionic detergent, J. Biol. Chem 252: 3551.Google Scholar
  30. Dean, W., and Tanford, C., 1978, Properties of a delipidated, detergent-activated Ca++-ATPase, Biochemistry 17: 1683.CrossRefGoogle Scholar
  31. Degani, C., and Boyer, P., 1973, A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem 248: 8222.Google Scholar
  32. DeMeis, L., 1969, Activation of Ca++ uptake by acetylphosphate in muscle microsomes, Biochim. Biophys. Acta 172: 343.CrossRefGoogle Scholar
  33. DeMeis, L., 1976, Regulation of steady state level of phosphoenzyme and ATP synthesis in sarco- plasmic reticulum vesicles during reversal of the Ca2+ pump, J. Biol. Chem 251: 2055.Google Scholar
  34. DeMeis, L., and Carvaeho, M. G. C., 1974, Role of the Ca2+concentration gradient in the adenosine-5’-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum, Biochemistry 13: 5032.CrossRefGoogle Scholar
  35. DeMeis, L., and Sorenson, M. M., 1975, ATP Pi ⇄ exchanges and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of Caz2+concentration gradient, Biochemistry 14: 2739.CrossRefGoogle Scholar
  36. DeMeis, L., and Tume, R., 1977, A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca++-dependent adenosine triphosphatase of sarcoplasmic reticulum, Biochemistry 16: 4455.CrossRefGoogle Scholar
  37. DeMeis, L., and Vianna, A. L., 1979, Energy interconversion by the Cat+-dependent ATPase of the sarcoplasmic reticulum, Ann. Rev. Biochem 48: 275.CrossRefGoogle Scholar
  38. Drabikowski, W., Dominas, H., and Dabrowska, M., 1966, Lipid patterns in microsomal fractions of rabbit skeletal muscle, Acta Biochim. Pol 13: 11.Google Scholar
  39. Dupont, Y., and Leigh, J., 1978, Transient kinetics of sarcoplasmic reticulum Ca + Mg ATPase studied by fluorescence, Nature (London) 273: 396.CrossRefGoogle Scholar
  40. Dupont, Y., Harrison, S., and Hasselbach, W., 1973, Molecular organization in the sarcoplasmic reticulum membrane studied by X-ray diffraction, Nature (London) 244: 555.CrossRefGoogle Scholar
  41. Ebashi, S., 1958, A granule-bound relaxation factor in skeletal muscle, Arch. Biochem. Biophys 76: 410.CrossRefGoogle Scholar
  42. Ebashi, S., 1960, Calcium binding and relaxation in the actomyosin, J. Biochem. (Tokyo) 48: 150.Google Scholar
  43. Ebashi, S., 1976, Excitation-contraction coupling, Annu. Rev. Physiol. 38: 293.Google Scholar
  44. Ebashi, S., and Endo, M., 1968, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol 18: 125.CrossRefGoogle Scholar
  45. Ebashi, S., and Lipmann, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particular fraction of rabbit muscle, J . Cell Biol. 14: 389.CrossRefGoogle Scholar
  46. Eisenberg, B., and Gilai, A., 1979, Structural changes in single muscle fibers after stimulation at a low frequency, J . Gen. Physiol. 74: 1.CrossRefGoogle Scholar
  47. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev 57: 71.Google Scholar
  48. Endo, M., and Nakajima, Y., 1973, Release of calcium induced by “depolarisation” of the sarcoplasmic reticulum of skeletal muscle, Nature (London) 246: 216.Google Scholar
  49. Endo, M., Tanaka, M., and Ogawa, Y., 1970, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers, Nature (London) 228: 34.CrossRefGoogle Scholar
  50. Fabiato, A., and Fabiato, F., 1972, Excitation contraction coupling of isolated cardiac fibres with disrupted or closed sarcolemmas, Circ. Res 31: 293.CrossRefGoogle Scholar
  51. Fabiato, A., and Fabiato, F., 1975, Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells, J. Physiol. (London) 249: 469.Google Scholar
  52. Fabiato, A., and Fabiato, F., 1977, Variations of the membrane potential of the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscle detected with a potential-sensitive dye, J. Gen. Physiol 70: 6.Google Scholar
  53. Fabiato, A., and Fabiato, F., 1979, Calcium and cardiac excitation-contraction coupling, Annu. Rev. Physiol 41: 437.CrossRefGoogle Scholar
  54. Fiehn, W., and Migala, A., 1971, Calcium binding to sarcoplasmic membranes, Eur. J. Biochem 20: 245.CrossRefGoogle Scholar
  55. Ford, L., and Podolsky, R., 1970, Regenerative calcium release within muscle cells, Science 167: 58.CrossRefGoogle Scholar
  56. Franzini-Armstrong, C., 1964, Fine structure of sarcoplasmic reticulum and transverse tubular system in muscle fibers, Fed. Proc. Fed. Am. Soc. Exp. Biol 23: 887.Google Scholar
  57. Franzini-Armstrong, C., 1974, Freeze fracture of skeletal muscle from the tarantula spider, J. Cell Biol 61: 501.CrossRefGoogle Scholar
  58. Froehlich, J., and Taylor, E., 1975, Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem 250: 2013.Google Scholar
  59. Fry, D., Scales, D., and Inesi, G., 1979, The ultrastructure of membrane alterations of enzymatically dissociated cardiac myocytes, J. Mol. Cell. Cardiol 11: 1151.CrossRefGoogle Scholar
  60. Fuchs, F., 1974, Striated muscle, Annu. Rev. Physiol 36: 461.CrossRefGoogle Scholar
  61. Gonzalez-Serratos, H., 1971, Inward spread of activation in vertebrate muscle fibres, J. Physiol. (London) 212: 777.Google Scholar
  62. Hasselbach, W., 1964, Relaxing factor and the relaxation of muscle, Prog. Biophys. Biophys. Chem 14: 167.CrossRefGoogle Scholar
  63. Hasselbacli, W., 1978, The reversibility of the sarcoplasmic calcium pump, Biochim. Biophys. Acta 515: 23.CrossRefGoogle Scholar
  64. Hasselbach, W., and Makinose, M., 1961, Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhangigkeit von der ATP-Spaltung, Biochem. Z 333: 518.Google Scholar
  65. Hasselbach, W., and Makinose, M., 1963, Uber den Mechanismus des Calciumtransportes durch die Membranen des Sarkoplasmatischen Reticulums, Biochem. Z 339: 94.Google Scholar
  66. Herbette, L., Marquardt, J., Scarpa, A., and Blasie, J., 1977, A direct analysis of lamellar X-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum, Biophys. J 20: 245.CrossRefGoogle Scholar
  67. Huxley, A., and Taylor, R., 1958, Local activation of striated muscle fibers, J. Physiol. (London) 144: 426.Google Scholar
  68. Huxley, H., 1957, The double array of filaments is cross-striated muscle, J. Biophys. Biochem. Cytol 3: 631.CrossRefGoogle Scholar
  69. Huxley, H., 1964, Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle, Nature (London) 202:1067.Google Scholar
  70. Ikemoto, N., 1975, Transport and inhibitory calcium binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum, J. Biol. Chem 250: 7219.Google Scholar
  71. Ikemoto, N., Sreter, F., Nakamura, A., and Gergely, J., 1968, Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum, J. Ultrast. Res 23: 216.CrossRefGoogle Scholar
  72. Ikemoto, N., Bhatnager, G., and Gergely, J., 1971, Fractionation of solubilized sarcoplasmic reticulum, Biochem. Biophys. Res. Commun 44: 1510.CrossRefGoogle Scholar
  73. Ikemoto, N., Morgan, T., and Yamada, S., 1978, Ca++ controlled conformational states in the Ca++ transport enzyme of sarcoplasmic reticulum, J. Biol. Chem 253: 8027.Google Scholar
  74. Inesi, G., 1971, p-Nitrophenyl phosphate hydrolysis and calcium ion transport in fragmented sarcoplasmic reticulum, Science 171:901 Google Scholar
  75. Inesi, G., 1972, Active transport of calcium ion in sarcoplasmic membranes, Annu. Rev. Biophys. Bioeng 1: 191.CrossRefGoogle Scholar
  76. Inesi, G., 1979, Transport across sarcoplasmic reticulum in skeletal and cardiac muscle, in: Membrane Transport in Biology ( G. Giebisch, D. Tosteson, and H. Ussing, eds.), p. 357. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  77. Inesi, G., and Asai, H., 1968, Trypsin digestion of fragmented sarcoplasmic reticulum, Arch. Biochem. Biophys 126: 469.CrossRefGoogle Scholar
  78. Inesi, G., and Scales, D., 1974, Tryptic cleavage of sarcoplasmic reticulum protein, Biochemistry 13: 3298.CrossRefGoogle Scholar
  79. Inesi, G., and Scarpa, A., 1972, Fast kinetics of adenosine triphosphatase dependent Ca++ uptake by fragmented sarcoplasmic reticulum, Biochemistry 11: 356.CrossRefGoogle Scholar
  80. Inesi, G., Goodman, J. J., and Watanabe, S., 1967, Effect of diethyl ether on the ATPase activity and calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle, J. Biol. Chem 242: 4637.Google Scholar
  81. Inesi, G., Maring, E., Murphy, A., and McFarland, B., 1970, A study of the phosphorylated intermediate in sarcoplasmic reticulum ATPase, Arch. Biochem. Biophys 138: 285.CrossRefGoogle Scholar
  82. Inesi, G., Kurzmack, M., and Verjovski-Almeida, S., 1978, ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity, Ann. N. Y. Acad. Sci 307: 224.CrossRefGoogle Scholar
  83. Inesi, G., Kurzmack, M., Coan, C., and Lewis, D., 1980a, Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles, J . Biol. Chem. 255: 3025.Google Scholar
  84. Inesi, G., Kurzmack, M., Nakamoto, R., DeMeis, L., and Bernhard, S., 1980b, Uncoupling of calcium control and phosphohydrolase activity in sarcoplasmic reticulum vesicles, J. Biol. Chem 255: 6040.Google Scholar
  85. Jencks, W., 1975, Binding energy, specificity, and enzymic catalysis—the Circe effect, Adv. Enzymol 43: 219.Google Scholar
  86. Jilka, R., Martonosi, A., and Tilback, T. W., 1975, Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive permeability and ultrastructure of phospholipid vesicles, J . Biol. Chem. 250: 7511.Google Scholar
  87. Jorgensen, K., Lind, K., Roigaard-Peterson, H., and Moller, J., 1978, The functional unit of calcium-plus-magnesium-ion-dependent adenosine triphosphatase from sarcoplasmic reticulum, Biochem. J 169: 489.Google Scholar
  88. Kasai, M., and Kometani, T., 1979, Inhibition of anion permeability of sarcoplasmic reticulum vesicles by 4-acetoamido-4’-isothiocyano-stilbene-2,2’-disulfonate, Biochim. Biophys. Acta 557: 243.CrossRefGoogle Scholar
  89. Kielley, W., and Meyerhof, O., 1948, A new magnesium-activated adenosinetriphosphatase from muscle, J . Biol. Chem. 174: 387.Google Scholar
  90. Knowles, A., and Racker, E., 1975, Formation of adenosine triphosphate from Pi and adenosine diphosphate by purified Cat+-adenosine, J . Biol. Chem. 250: 1949.Google Scholar
  91. Knowles, A., Eytan, E., and Racker, E., 1976, Phospholipid-protein interactions in the Ca++-adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem 251: 5161.Google Scholar
  92. Kovacs, L., Rios, E., and Schneider, M., 1979, Calcium transients and intramembrane charge movement in skeletal muscle fibres, Nature (London) 279: 391.CrossRefGoogle Scholar
  93. Kumagai, H., Ebashi, S., and Takeda, F., 1955, Essential relaxing factor in muscle other than myokinase and creatine phosphokinase, Nature (London) 176: 166.CrossRefGoogle Scholar
  94. Kurzmack, M., and Inesi, G., 1977, The initial phase of calcium uptake and ATPase activity of sarcoplasmic reticulum vesicles, FEBS Lett. 74: 35.CrossRefGoogle Scholar
  95. Kurzmack, M., Inesi, G., Tal, N., and Bernhard, S., 1981, Studies on the mechanism of furylacrylphosphatase coupled Ca++ transport with sarcoplasmic reticulum ATPase, Biochemistry 20: 486.CrossRefGoogle Scholar
  96. Lau, Y., Caswell, A., and Brunschwig, J., 1977, Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle, J. Biol. Chem 252: 5565.Google Scholar
  97. LeMaire, M., Moller, J., and Tanford, C., 1976, Retention of enzyme activity by detergentsolubilized sarcoplasmic Ca++-ATPase, Biochemistry 15: 2336.CrossRefGoogle Scholar
  98. Louis, C., and Shooter, E., 1972, The proteins of rabbit skeletal muscle sarcoplasmic reticulum, Arch. Biochem. Biophys 153: 641.CrossRefGoogle Scholar
  99. MacLennan, D., 1970, Purification and properties of the adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem 245: 4508.Google Scholar
  100. MacLennan, D., and Holland, P., 1975, Calcium transport in sarcoplasmic reticulum, Annu. Rev. Biophys. Bioeng 4: 377.CrossRefGoogle Scholar
  101. MacLennan, D., and Wong, P., 1971, Isolation of a calcium-sequestering protein from sarcoplasmic reticulum, Proc. Natl. Acad. Sci, U.S.A 68: 1231.CrossRefGoogle Scholar
  102. MacLennan, D., Yip, C., Iles, G., and Seeman, P., 1973, Isolation of sarcoplasmic reticulum proteins, Cold Spring Harbor Symp. Quant. Biol 37: 469.CrossRefGoogle Scholar
  103. Makinose, M., 1969, The phosphorylation of the membrane protein of the sarcoplasmic vesicles during active calcium transport, Eur. J. Biochem 10: 74.CrossRefGoogle Scholar
  104. Makinose, M., 1972, Phosphoprotein formation during osmo-chemical energy conversion in the membrane of the sarcoplasmic reticulum, FEBS Lett. 25: 113.CrossRefGoogle Scholar
  105. Makinose, M., and Hasselbach, W., 1971, ATP synthesis by the reverse of the sarcoplasmic calcium pump, FEBS Lett. 12: 271.CrossRefGoogle Scholar
  106. Makinose, M., and The, R., 1965, Calcium-Akkumulation und Nucleosidtriphosphat-Spaltung durch die Vesikel des sarkoplasmatischen Reticulum, Biochem. Z 343: 383.Google Scholar
  107. Marsh, B., 1951, A factor modifying muscle fiber synaeresis, Nature (London) 167:1065. Martonosi, A., 1964, Role of phospholipids in ATPase activity and Ca transport of fragmented sarcoplasmic reticulum, Fed. Proc. Fed. Am. Soc. Exp. Biol 23: 913.Google Scholar
  108. Martonosi, A., 1968, Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase, J. Biol. Chem 243: 71.Google Scholar
  109. Martonosi, A., 1969, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem 244: 613.Google Scholar
  110. Martonosi, A., 1972, Transport of calcium by the sarcoplasmic reticulum, in: Metabolic Pathways, Vol. 6 ( L. Hokin, ed.), p. 317, Academic Press, New York.Google Scholar
  111. Martonosi, A., and Feretos, R., 1964, Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments, J. Biol. Chem 239: 648.Google Scholar
  112. Martonosi, A., and Halpin, R., 1971, Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144:66.Google Scholar
  113. Masuda, H., and DeMeis, L., 1973, Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate: Inhibition by calcium ions, Biochemistry 12: 4581.CrossRefGoogle Scholar
  114. McFarland, B., and Inesi, G., 1971, Solubilization of sarcoplasmic reticulum with Triton X-100, Arch. Biochem. Biophys 145: 456.CrossRefGoogle Scholar
  115. Meissner, G., 1973, ATP and Ca++ binding by the Ca++ pump protein of sarcoplasmic reticulum, Biochim. Biophys. Acta 298: 906.CrossRefGoogle Scholar
  116. Meissner, G., 1975, Isolation and characterization of two types of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 389: 51.CrossRefGoogle Scholar
  117. Meissner, G., and McKinley, D., 1976, Permeability of sarcoplasmic reticulum membrane: The effect of changed ionic environments on Ca++ release, J. Membr. Biol 30: 79.CrossRefGoogle Scholar
  118. Meissner, G., Conner, G., and Fleischer, S., 1973, Isolation of sarcoplasmic reticulum by zonalGoogle Scholar
  119. centrifugation and purification of Cat2+-pump and Cat+-binding proteins, Biochim. Biophys. Acta 298:246 Google Scholar
  120. Michalak, M., Campbell, K., and MacLennan, D., 1980, Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes, J. Biol. Chem. 255:1317.Google Scholar
  121. Miller, C., 1978, Voltage gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady state electric properties, J. Membr. Biol. 40:1.Google Scholar
  122. Murphy, A., 1978, Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes, J. Biol. Chem 253: 385.Google Scholar
  123. Muscatello, U., Andersson-Cedergren, E., Azzone, G., and von der Decken, A., 1961, The sarcotubular system of frog skeletal muscle: A morphological and biochemical study, J. Biophys. Biochem. Cytol 10: 201.CrossRefGoogle Scholar
  124. Nagai, T., Makinose, M., and Hasselbach, W., 1960, The physiological relaxing factor produced by the muscle granules, Biochim. Biophys. Acta 43: 223.CrossRefGoogle Scholar
  125. Nagai, T., Takahashi, H., and Takauji, M., 1965, On the accumulation of divalent cations by skeletal muscle microsomes, in: Molecular Biology of Muscular Contraction, Vol. 9 ( S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), p. 169, Elsevier, Amsterdam.Google Scholar
  126. Natori, R., 1965, Effects of Na and Ca ions on the excitability of isolated myofibrils, in: Molecular Biology of Muscular Contraction, Vol. 9 ( S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), p. 190, Elsevier, Amsterdam.Google Scholar
  127. Neet, K., and Green, N., 1977, Kinetics of the cooperativity of the Ca++-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction, Arch. Biochem. Biophys 178: 588.CrossRefGoogle Scholar
  128. Oetliker, H., Baylor, S., and Chandler, W., 1975, Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity, Nature (London) 247: 693.CrossRefGoogle Scholar
  129. Ostwald, T., and MacLennan, D., 1974, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum, J. Biol. Chem 249: 974.Google Scholar
  130. Peachy, L., 1965, The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius, J. Cell Biol 25: 209.CrossRefGoogle Scholar
  131. Peterson, S., and Deamer, D., 1977, Characterization of the interactions between lysophos-phatides, Triton X-100, and sarcoplasmic reticulum, Arch. Biochem. Biophys 179: 218.CrossRefGoogle Scholar
  132. Porter, K., and Palade, G., 1957, Studies on the endoplasmic reticulum. III. Its form and distribu-tion in striated muscle cells, J. Biophys. Biochem. Cytol 3: 269.CrossRefGoogle Scholar
  133. Portzehl, H., 1957, Die Bindung des Erschlaffungfactors von Marsh an die Muskelgrana, Biochim. Biophys. Acta 26: 373.CrossRefGoogle Scholar
  134. Prager, R., Punzengruber, C., Kolassa, N., Winkler, F., and Suko, J., 1979, Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate, Eur. J. Biochem 97: 239.CrossRefGoogle Scholar
  135. Pucell, A., and Martonosi, A., 1971, Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport, J. Biol. Chem 246: 3389.Google Scholar
  136. Racker, E., 1972, Reconstitution of a calcium pump with phospholipids and a purified Ca++-adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem 247: 8198.Google Scholar
  137. Rauch, B., Chak, D., and Hasselbach, W., 1977, Phosphorylation by inorganic phosphate of sarcoplasmic membranes, Z. Naturforsch. Teil C 32: 828.Google Scholar
  138. Rieser, G., Sabbadini, R., Paolini, P., Fry, D., and Inesi, G., 1979, Sarcomere motion in isolated cardiac cells, Am. J. Physiol 236: 70.Google Scholar
  139. Rizzolo, L., LeMaire, M., Reynolds, J., and Tanford, C., 1976, Molecular weights and hydrophobicity of the polypeptide chain of sarcoplasmic reticulum calcium (II) adenosine triphosphatase and of its primary tryptic fragments, Biochemistry 15: 3433.CrossRefGoogle Scholar
  140. Rossi, B., Leone, F., Gache, C., and Lazdunski, M., 1979, Pseudosubstrates of the sarcoplasmic Ca++-ATPase as tools to study the coupling between substrate hydrolysis and Ca++ transport, J. Biol. Chem 254: 2302.Google Scholar
  141. Sandow, A., 1965, Excitation-contraction coupling in skeletal muscle, Pharrrcacol. Rev. 17:265.Google Scholar
  142. Scales, D., and Inesi, G., 1976, Assembly of ATPase protein in sarcoplasmic reticulum membranes, Biophys. J. 16:735.Google Scholar
  143. Scales, D., and Sabbadini, R., 1979, A stereological analysis of purified microsomes derived from normal and dystrophic skeletal muscle, J. Cell Biol 83: 33.CrossRefGoogle Scholar
  144. Scarpa, A., Baldassare, J., and Inesi, G., 1972, The effect of calcium ionophores on fragmented sarcoplasmic reticulum, J. Gen. Physiol 60: 735.CrossRefGoogle Scholar
  145. Solaro, R., and Briggs, F., 1974, Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle, Circ. Res 34: 531.CrossRefGoogle Scholar
  146. Somlyo, A. V., 1979, Bridging structures spanning the junctional gap at the triad of skeletal muscle, J. Cell Biol 80: 743.CrossRefGoogle Scholar
  147. Sommer, J., and Johnson, E., 1979, Ultrastructure of cardiac muscle, in: Handbook of Physiology, Vol. 1, The Cardiovascular System ( R. Berne, N. Sperelakis, and S. Geiger, eds.), p. 113, American Physiological Society, Bethesda, Maryland.Google Scholar
  148. Sumida, M., Wang, T., Mandel, F., Froehlich, J., and Schwartz, A., 1978, Transient kinetics of Ca++ transport of sarcoplasmic reticulum, J. Biol. Chem 253: 8772.Google Scholar
  149. Tada, M., Yamamoto, T., and Tonomura, Y., 1978, Molecular mechanism of active calcium transport by sarcoplasmic reticulum, Physiol. Rev 58: 1.Google Scholar
  150. Thorley-Lawson, D., and Green, N., 1973, Studies on the location and orientation of proteins in the sarcoplasmic reticulum, Eur. J. Biochem 40: 403.CrossRefGoogle Scholar
  151. Vanderkooi, J., Ierokomas, A., Nakamura, H., and Martonosi, A., 1977, Fluorescence energy transfer between Ca++ transport ATPase molecules in artificial membranes, Biochemistry 16: 1262.CrossRefGoogle Scholar
  152. Veratti, E., 1961, Investigations on the fine structure of striated muscle fiber, J. Biophys. Biochem. Cytol. 10:1 [reprinted from: Memorie Instituto Lombardodi-Scienze e Lettere 19: 87 (1902)].Google Scholar
  153. Verjovski-Almeida, S., and Inesi, G., 1979, Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle, Biochim. Biophys. Acta 558: 119.CrossRefGoogle Scholar
  154. Verjovski-Almeida, S., Kurzmack, M., and Inesi, G., 1978, Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase, Biochemistry 17: 5006.CrossRefGoogle Scholar
  155. Waku, K., and Nakazawa, Y., 1964, On the lipids of rabbit sarcoplasmic reticulum, J. Biochem. (Tokyo) 56: 95.Google Scholar
  156. Wang, C., Saito, A., and Fleischer, S., 1979, Correlation of ultrastructure of reconstituted sarcoplasmic reticulum membrane vesicles with variation in phospholipid to protein ratio, J. Biol. Chem 254: 9209.Google Scholar
  157. Warren, G., Toon, P., Birdsall, N., Lee, A., and Metcalfe, J., 1974, Reversible lipid titrations of the activity of pure adenosine triphosphatase-lipid complexes, Biochemistry 13: 5501.CrossRefGoogle Scholar
  158. Weber, A., 1959, On the role of calcium in the activity of adenosine 5’-triphosphate hydrolysis by actomyosin, J. Biol. Chem 234: 2764.Google Scholar
  159. Weber, A., 1966, Energized calcium transport and relaxing factor, in: Current Topics in Bioenergetics ( D. Sanadi, ed.), p. 203, Academic Press, New York.Google Scholar
  160. Weber, A., 1971, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis, J. Gen. Physiol 57: 50.CrossRefGoogle Scholar
  161. Weber, A., Herz, R., and Reiss, I., 1967, The nature of the cardiac relaxing factor, Biochim. Biophys. Acta 131: 188.CrossRefGoogle Scholar
  162. Winegrad, S., 1965, The location of muscle calcium with respect to the myofibrils, J. Gen. Physiol 48: 997.CrossRefGoogle Scholar
  163. Worthington, C., and Liu, S., 1973, Structure of sarcoplasmic reticulum membranes at low resolution (17 A), Arch. Biochem. Biophys 157: 573.CrossRefGoogle Scholar
  164. Yamada, S., and Tonomura, Y., 1972, Phosphorylation of the Ca++-Mg++-dependent ATPase of the sarcoplasmic reticulum coupled with cation translocation, J. Biochem. (Tokyo) 71: 1101.Google Scholar
  165. Yamamoto, T., and Tonomura, Y., 1967, Reaction mechanism of the Ca++-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies, J. Biochem. (Tokyo) 62: 558.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Giuseppe Inesi
    • 1
  1. 1.Department of Biological ChemistryUniversity of Maryland Medical SchoolBaltimoreUSA

Personalised recommendations