Studies of Sarcomere Length by Optical Diffraction

  • Roger McCarter


Over the past few years, there has been an explosive increase in the use of optical diffraction as a tool for studying the function of skeletal muscle. The usefulness of this technique lies in the fact that it can provide an effectively instantaneous measurement of the length of the basic contractile unit of skeletal muscle fibers, the sarcomere. The importance of the measurement is that sarcomere length is a major determinant of the functional properties of skeletal-muscle cells. Optical-diffraction data can therefore identify a given sarcomere length and provide insight into the dynamic properties of sarcomeres and can be used to assess the validity of models of the mechanism of contraction. These data may also show how different populations of sarcomeres interact with each other, information that is of potential importance in both normal and diseased states of striated muscle.


Isometric Contraction Intensity Profile Single Fiber Thin Filament Bragg Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barden, J. A., and Mason, P., 1978, Muscle crossbridge stroke and activity revealed by optical diffraction, Science 199: 1212–1213.CrossRefGoogle Scholar
  2. Barden, J. A., and Mason, P., 1979, Sarcomere shortening and tension development during “isometric” tetanus of muscle, Experientia 35: 1584–1585.CrossRefGoogle Scholar
  3. Baskin, R. J., Roos, K. P., and Yeh, Y., 1979, Light diffraction study of single skeletal muscle fibers, Biophys. J 28: 45–64.CrossRefGoogle Scholar
  4. Bonner, R. F., and Carlson, F. D., 1975, Structural dynamics of frog muscle during isometric contraction, J. Gen. Physiol 65: 555–581.CrossRefGoogle Scholar
  5. Bragg, W. L., 1913, The structure of some crystals as indicated by their diffraction of X-rays, Proc. R. Soc. London Ser. A 89: 248–277.CrossRefGoogle Scholar
  6. Buchtal, F., and Knappeis, G. G., 1940, Diffraction spectra and minute structure of the cross striated muscle fiber, Skand. Arch. Physiol 83: 281–307.CrossRefGoogle Scholar
  7. Cleworth, D. R., and Edman, K. A. P., 1972, Changes in sarcomere length during isometric tension development in frog skeletal muscle, J. Physiol 227: 1–17.Google Scholar
  8. Edman, K. A. P., 1979, The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibers, J. Physiol 291: 143–159.Google Scholar
  9. Edman, K. A. P., and Kiessling, A., 1971, The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibers of the frog, Acta Physiol. Scand 81: 182–196.CrossRefGoogle Scholar
  10. Edman, K. A. P., Elzinga, G., and Noble, M. I. M., 1978, Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibers, J. Physiol 281: 139–155.Google Scholar
  11. Fischer, E., 1926, Die isometrische Muskelaction des curarisierten und nicht curarisierten Sartorius, seine Dehnbarkeit und die Fortpflanzung der Dehnungswelle, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 213: 352–358.CrossRefGoogle Scholar
  12. Flitney, F. W., and Hirst, D. G., 1978a, Cross-bridge detachment and sarcomere “give” during stretch of active frog’s muscle, J. Physiol 276: 449–465.Google Scholar
  13. Flitney, F. W., and Hirst, D. G., 1978b, Filament sliding and energy absorbed by the cross-bridges in active muscle subjected to cyclical length changes, J. Physiol 276: 467–479.Google Scholar
  14. Fujime, S., 1975, Optical diffraction study of muscle fibers, Biochim. Biophys. Acta 379: 227–238.CrossRefGoogle Scholar
  15. Fujime, S., and Yoshino, S., 1978, Optical diffraction study of muscle fibers. 1. A theoretical basis, Biophys. Chem 8: 305–315.CrossRefGoogle Scholar
  16. Goldman, Y. E., and Simmons, R. M., 1979, A diffraction system for measuring muscle sarcomere length, J. Physiol 292: 5P–6 P.Google Scholar
  17. Gordon, A. M., Huxley, A. F., and Julian, F. J., 1966, The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol. (London) 184: 170–192.Google Scholar
  18. Halpern, W., 1977, A rapid, on-line, high resolution analyzer of striated muscle diffraction patterns, Proc. San Diego Biomed. Symp 16: 429–439.Google Scholar
  19. Haugen, P., and Sten-Knudsen, O., 1976, Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibers, J. Physiol. 68: 247–265.Google Scholar
  20. Hill, A. V., 1938, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. London Ser. B 126: 136–195.CrossRefGoogle Scholar
  21. Hill, A. V., 1953, The mechanics of active muscle, Proc R. Soc. London Ser. B 141: 104–117.CrossRefGoogle Scholar
  22. Hill, D. K., 1953a, The optical properties of resting striated muscle: The effect of rapid stretch on the scattering and diffraction of light, J. Physiol 119: 489–500.Google Scholar
  23. Hill, D. K., 1953b, The effect of stimulation on the diffraction of light by striated muscle, J. Physiol 119: 501–512.Google Scholar
  24. Huntsman, L. L., Day, S. R., and Steward, D. K., 1977, Non-uniform contraction in the isolated cat papillary muscle, Am. J. Physiol 233: H613–H616.Google Scholar
  25. Huxley, A. F., 1974, Muscular contraction, J. Physiol 243: 1–43.Google Scholar
  26. Huxley, A. F., and Peachey, L. D., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol. (London) 156: 150–165.Google Scholar
  27. Huxley, A. F., and Simmons, R, M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233: 533–538.CrossRefGoogle Scholar
  28. Huxley, A. F., and Simmons, R. M., 1973, Mechanical transients and origin of muscular force, Cold Spring Harbor Symp. Quant. Biol 37: 669–680.CrossRefGoogle Scholar
  29. Ingels, N. B. (ed.), 1979, The Molecular Basis of Force Development in Muscle, Palo Alto Medical Research Foundation, Palo Alto, California, 162 pp.Google Scholar
  30. Iwazumi, T., and Pollack, G. H., 1979, On-line measurement of sarcomere length from diffraction patterns in muscle, IEEE Trans. Biomed. Eng 26: 86–93.CrossRefGoogle Scholar
  31. James, R. W., 1950, The Optical Principals of the Diffraction of X-Rays, Bell and Sons, London, 623 pp.Google Scholar
  32. Jewell, B. R., and Wilkie, D. R., 1958, Analysis of the mechanical components in frog’s striated muscle, J. Physiol. (London) 143: 514–540.Google Scholar
  33. Julian, F. J., 1969, A method for obtaining a D-C voltage signal proportional to the average sarcomere length, Biophys. J 9: A183.CrossRefGoogle Scholar
  34. Julian, F. J., and Morgan, D. L., 1979, Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibers, J. Physiol. (London) 293: 365–378.Google Scholar
  35. Julian, F J., Sollins, M. R., and Moss, R. L., 1978, Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibers, Proc. R. Soc. London Ser. B 200: 109–116.CrossRefGoogle Scholar
  36. Katz, B., 1939, The relation between force and speed in musclar contraction, J. Physiol 96: 54–64.Google Scholar
  37. Kawai, M., and Kuntz, I. D., 1973, Optical diffraction studies of muscle fibers (fiber bundles), Biophys. J 13: 857–876.CrossRefGoogle Scholar
  38. Krueger, J. W., and Pollack, G. H., 1975, Myocardial sarcomere dynamics during isometric contraction, J. Physiol. (London) 251: 627–643.Google Scholar
  39. Larson, R. E., Kushmerick, M. J., Haynes, D. H., and Davies, R. E., 1968, Internal work during maintained tension of isometric tetanus, Biophys. J. 8:MA4.Google Scholar
  40. Manring, A., Nassar, R., and Johnson, E. A., 1977, Light diffraction of cardiac muscle: An analysis of sarcomere shortening and muscle tension, J. Mol. Cell. Cardiol 9: 441–459.CrossRefGoogle Scholar
  41. Marikhin, V. A., and Myasnikova, L. P., 1970, Light diffraction on the muscle fibers. 1. Analysis of the geometrical pattern of diffraction, Tsitologiya 12: 1231–1236.Google Scholar
  42. McCarter, R. J. M., 1975, Distribution of sarcomere spacings of frog skeletal muscle in the normal and delta states, Physiologist 18: 312.Google Scholar
  43. McCarter, R. J. M., 1976, Sarcomere movements during isometric contraction of frog skeletal muscles at extended length, Fed. Proc. Fed. Am. Soc. Exp. Biol 35: 377.Google Scholar
  44. McCarter, R., 1978, Correlation of structure and function in mammalian skeletal muscle, Biophys. J 21: 87.CrossRefGoogle Scholar
  45. Nassar, R., Manring, A., and Johnson, E. A., 1973, Light diffraction in cardiac muscle, Physiologist 16: 407.Google Scholar
  46. Nicolai, L., 1936, Über das Beugungspektrum der Querstreifung des Skeletmuskels und ein direkten beweis der Diskontinuität der tetanischer Kontraktion, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 237: 399–410.CrossRefGoogle Scholar
  47. Paolini, P. J., and Roos, K. P., 1975, Length-dependent optical diffraction pattern changes in frog sartorius muscle, Physiol. Chem. Phys 7: 235–254.Google Scholar
  48. Paolini, P. J., Sabbadini, R., Roos, K. P., and Baskin, R. J., 1976, Sarcomere length dispersion in single skeletal muscle fibers and fiber bundles, Biophys. J 16: 919–930.CrossRefGoogle Scholar
  49. Pollack, G. H., 1979, Reconsidering the dogmas, in: The Molecular Basis of Force Development in Muscle ( N. B. Ingels, ed.), pp. 61–84, Palo Alto Medical Research Foundation, Palo Alto, California.Google Scholar
  50. Pollack, G. H., Iwazumi, T., ter Keurs, H. E. D. J., and Shibata, E. F. 1977, Sarcomere shortening in striated muscle occurs in stepwise fashion, Nature (London) 268: 757–759.CrossRefGoogle Scholar
  51. Ramsey, R. W., and Street, S. F., 1940, The isometric length-tension diagram of isolated skeletal muscle fibers of the frog, J. Cell. Comp. Physiol 15: 11–34.CrossRefGoogle Scholar
  52. Ranvier, J., 1874, Du spectre produit par les muscles striés, Arch. Physiol. T 6: 274–281.Google Scholar
  53. Rudel, R., and Zite-Ferenczy, F., 1979a, Interpretation of light diffraction by cross-striated muscle as Bragg reflection of light by the lattice of contractile proteins, J. Physiol. (London) 290: 317–330.Google Scholar
  54. Rüdel, R., and Zite-Ferenczy, F., 1979b, Do laser diffraction studies on striated muscle indicate stepwise sarcomere shortening?, Nature (London) 278: 573–576.CrossRefGoogle Scholar
  55. Sandow, A., 1936a, Diffraction patterns of the frog sartorius and sarcomere behavior under stretch, J. Cell. Comp. Physiol 9: 37–54.CrossRefGoogle Scholar
  56. Sandow, A., 1936b, Diffraction patterns of the frog sartorius and sarcomere behavior during contraction, J. Cell. Comp. Physiol 9: 55–75.CrossRefGoogle Scholar
  57. Sugi, H., and Tameyasu, T., 1979, The origin of the instantaneous elasticity in single frog muscle fibers, Experientia 35 (2): 227–228.CrossRefGoogle Scholar
  58. Ter Keurs, H. E. D. J., Iwazumi, T., and Pollack, G. H., 1978, The sarcomere length-tension relation in skeletal muscle, J. Gen. Physiol 72: 565–592.CrossRefGoogle Scholar
  59. Yeh, Y., Baskin, R. J., Lieber, R. L., and Roos, K. P., 1980, Theory of light diffraction by single skeletal muscle fibers, Biophys. J 29: 509–522.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Roger McCarter
    • 1
  1. 1.Department of PhysiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations