Skip to main content

Studies of Sarcomere Length by Optical Diffraction

  • Chapter
Cell and Muscle Motility
  • 150 Accesses

Abstract

Over the past few years, there has been an explosive increase in the use of optical diffraction as a tool for studying the function of skeletal muscle. The usefulness of this technique lies in the fact that it can provide an effectively instantaneous measurement of the length of the basic contractile unit of skeletal muscle fibers, the sarcomere. The importance of the measurement is that sarcomere length is a major determinant of the functional properties of skeletal-muscle cells. Optical-diffraction data can therefore identify a given sarcomere length and provide insight into the dynamic properties of sarcomeres and can be used to assess the validity of models of the mechanism of contraction. These data may also show how different populations of sarcomeres interact with each other, information that is of potential importance in both normal and diseased states of striated muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barden, J. A., and Mason, P., 1978, Muscle crossbridge stroke and activity revealed by optical diffraction, Science 199: 1212–1213.

    Article  Google Scholar 

  • Barden, J. A., and Mason, P., 1979, Sarcomere shortening and tension development during “isometric” tetanus of muscle, Experientia 35: 1584–1585.

    Article  Google Scholar 

  • Baskin, R. J., Roos, K. P., and Yeh, Y., 1979, Light diffraction study of single skeletal muscle fibers, Biophys. J 28: 45–64.

    Article  Google Scholar 

  • Bonner, R. F., and Carlson, F. D., 1975, Structural dynamics of frog muscle during isometric contraction, J. Gen. Physiol 65: 555–581.

    Article  Google Scholar 

  • Bragg, W. L., 1913, The structure of some crystals as indicated by their diffraction of X-rays, Proc. R. Soc. London Ser. A 89: 248–277.

    Article  Google Scholar 

  • Buchtal, F., and Knappeis, G. G., 1940, Diffraction spectra and minute structure of the cross striated muscle fiber, Skand. Arch. Physiol 83: 281–307.

    Article  Google Scholar 

  • Cleworth, D. R., and Edman, K. A. P., 1972, Changes in sarcomere length during isometric tension development in frog skeletal muscle, J. Physiol 227: 1–17.

    Google Scholar 

  • Edman, K. A. P., 1979, The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibers, J. Physiol 291: 143–159.

    Google Scholar 

  • Edman, K. A. P., and Kiessling, A., 1971, The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibers of the frog, Acta Physiol. Scand 81: 182–196.

    Article  Google Scholar 

  • Edman, K. A. P., Elzinga, G., and Noble, M. I. M., 1978, Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibers, J. Physiol 281: 139–155.

    Google Scholar 

  • Fischer, E., 1926, Die isometrische Muskelaction des curarisierten und nicht curarisierten Sartorius, seine Dehnbarkeit und die Fortpflanzung der Dehnungswelle, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 213: 352–358.

    Article  Google Scholar 

  • Flitney, F. W., and Hirst, D. G., 1978a, Cross-bridge detachment and sarcomere “give” during stretch of active frog’s muscle, J. Physiol 276: 449–465.

    Google Scholar 

  • Flitney, F. W., and Hirst, D. G., 1978b, Filament sliding and energy absorbed by the cross-bridges in active muscle subjected to cyclical length changes, J. Physiol 276: 467–479.

    Google Scholar 

  • Fujime, S., 1975, Optical diffraction study of muscle fibers, Biochim. Biophys. Acta 379: 227–238.

    Article  Google Scholar 

  • Fujime, S., and Yoshino, S., 1978, Optical diffraction study of muscle fibers. 1. A theoretical basis, Biophys. Chem 8: 305–315.

    Article  Google Scholar 

  • Goldman, Y. E., and Simmons, R. M., 1979, A diffraction system for measuring muscle sarcomere length, J. Physiol 292: 5P–6 P.

    Google Scholar 

  • Gordon, A. M., Huxley, A. F., and Julian, F. J., 1966, The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol. (London) 184: 170–192.

    Google Scholar 

  • Halpern, W., 1977, A rapid, on-line, high resolution analyzer of striated muscle diffraction patterns, Proc. San Diego Biomed. Symp 16: 429–439.

    Google Scholar 

  • Haugen, P., and Sten-Knudsen, O., 1976, Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibers, J. Physiol. 68: 247–265.

    Google Scholar 

  • Hill, A. V., 1938, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. London Ser. B 126: 136–195.

    Article  Google Scholar 

  • Hill, A. V., 1953, The mechanics of active muscle, Proc R. Soc. London Ser. B 141: 104–117.

    Article  Google Scholar 

  • Hill, D. K., 1953a, The optical properties of resting striated muscle: The effect of rapid stretch on the scattering and diffraction of light, J. Physiol 119: 489–500.

    Google Scholar 

  • Hill, D. K., 1953b, The effect of stimulation on the diffraction of light by striated muscle, J. Physiol 119: 501–512.

    Google Scholar 

  • Huntsman, L. L., Day, S. R., and Steward, D. K., 1977, Non-uniform contraction in the isolated cat papillary muscle, Am. J. Physiol 233: H613–H616.

    Google Scholar 

  • Huxley, A. F., 1974, Muscular contraction, J. Physiol 243: 1–43.

    Google Scholar 

  • Huxley, A. F., and Peachey, L. D., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol. (London) 156: 150–165.

    Google Scholar 

  • Huxley, A. F., and Simmons, R, M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233: 533–538.

    Article  Google Scholar 

  • Huxley, A. F., and Simmons, R. M., 1973, Mechanical transients and origin of muscular force, Cold Spring Harbor Symp. Quant. Biol 37: 669–680.

    Article  Google Scholar 

  • Ingels, N. B. (ed.), 1979, The Molecular Basis of Force Development in Muscle, Palo Alto Medical Research Foundation, Palo Alto, California, 162 pp.

    Google Scholar 

  • Iwazumi, T., and Pollack, G. H., 1979, On-line measurement of sarcomere length from diffraction patterns in muscle, IEEE Trans. Biomed. Eng 26: 86–93.

    Article  Google Scholar 

  • James, R. W., 1950, The Optical Principals of the Diffraction of X-Rays, Bell and Sons, London, 623 pp.

    Google Scholar 

  • Jewell, B. R., and Wilkie, D. R., 1958, Analysis of the mechanical components in frog’s striated muscle, J. Physiol. (London) 143: 514–540.

    Google Scholar 

  • Julian, F. J., 1969, A method for obtaining a D-C voltage signal proportional to the average sarcomere length, Biophys. J 9: A183.

    Article  Google Scholar 

  • Julian, F. J., and Morgan, D. L., 1979, Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibers, J. Physiol. (London) 293: 365–378.

    Google Scholar 

  • Julian, F J., Sollins, M. R., and Moss, R. L., 1978, Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibers, Proc. R. Soc. London Ser. B 200: 109–116.

    Article  Google Scholar 

  • Katz, B., 1939, The relation between force and speed in musclar contraction, J. Physiol 96: 54–64.

    Google Scholar 

  • Kawai, M., and Kuntz, I. D., 1973, Optical diffraction studies of muscle fibers (fiber bundles), Biophys. J 13: 857–876.

    Article  Google Scholar 

  • Krueger, J. W., and Pollack, G. H., 1975, Myocardial sarcomere dynamics during isometric contraction, J. Physiol. (London) 251: 627–643.

    Google Scholar 

  • Larson, R. E., Kushmerick, M. J., Haynes, D. H., and Davies, R. E., 1968, Internal work during maintained tension of isometric tetanus, Biophys. J. 8:MA4.

    Google Scholar 

  • Manring, A., Nassar, R., and Johnson, E. A., 1977, Light diffraction of cardiac muscle: An analysis of sarcomere shortening and muscle tension, J. Mol. Cell. Cardiol 9: 441–459.

    Article  Google Scholar 

  • Marikhin, V. A., and Myasnikova, L. P., 1970, Light diffraction on the muscle fibers. 1. Analysis of the geometrical pattern of diffraction, Tsitologiya 12: 1231–1236.

    Google Scholar 

  • McCarter, R. J. M., 1975, Distribution of sarcomere spacings of frog skeletal muscle in the normal and delta states, Physiologist 18: 312.

    Google Scholar 

  • McCarter, R. J. M., 1976, Sarcomere movements during isometric contraction of frog skeletal muscles at extended length, Fed. Proc. Fed. Am. Soc. Exp. Biol 35: 377.

    Google Scholar 

  • McCarter, R., 1978, Correlation of structure and function in mammalian skeletal muscle, Biophys. J 21: 87.

    Article  Google Scholar 

  • Nassar, R., Manring, A., and Johnson, E. A., 1973, Light diffraction in cardiac muscle, Physiologist 16: 407.

    Google Scholar 

  • Nicolai, L., 1936, Über das Beugungspektrum der Querstreifung des Skeletmuskels und ein direkten beweis der Diskontinuität der tetanischer Kontraktion, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 237: 399–410.

    Article  Google Scholar 

  • Paolini, P. J., and Roos, K. P., 1975, Length-dependent optical diffraction pattern changes in frog sartorius muscle, Physiol. Chem. Phys 7: 235–254.

    Google Scholar 

  • Paolini, P. J., Sabbadini, R., Roos, K. P., and Baskin, R. J., 1976, Sarcomere length dispersion in single skeletal muscle fibers and fiber bundles, Biophys. J 16: 919–930.

    Article  Google Scholar 

  • Pollack, G. H., 1979, Reconsidering the dogmas, in: The Molecular Basis of Force Development in Muscle ( N. B. Ingels, ed.), pp. 61–84, Palo Alto Medical Research Foundation, Palo Alto, California.

    Google Scholar 

  • Pollack, G. H., Iwazumi, T., ter Keurs, H. E. D. J., and Shibata, E. F. 1977, Sarcomere shortening in striated muscle occurs in stepwise fashion, Nature (London) 268: 757–759.

    Article  Google Scholar 

  • Ramsey, R. W., and Street, S. F., 1940, The isometric length-tension diagram of isolated skeletal muscle fibers of the frog, J. Cell. Comp. Physiol 15: 11–34.

    Article  Google Scholar 

  • Ranvier, J., 1874, Du spectre produit par les muscles striés, Arch. Physiol. T 6: 274–281.

    Google Scholar 

  • Rudel, R., and Zite-Ferenczy, F., 1979a, Interpretation of light diffraction by cross-striated muscle as Bragg reflection of light by the lattice of contractile proteins, J. Physiol. (London) 290: 317–330.

    Google Scholar 

  • Rüdel, R., and Zite-Ferenczy, F., 1979b, Do laser diffraction studies on striated muscle indicate stepwise sarcomere shortening?, Nature (London) 278: 573–576.

    Article  Google Scholar 

  • Sandow, A., 1936a, Diffraction patterns of the frog sartorius and sarcomere behavior under stretch, J. Cell. Comp. Physiol 9: 37–54.

    Article  Google Scholar 

  • Sandow, A., 1936b, Diffraction patterns of the frog sartorius and sarcomere behavior during contraction, J. Cell. Comp. Physiol 9: 55–75.

    Article  Google Scholar 

  • Sugi, H., and Tameyasu, T., 1979, The origin of the instantaneous elasticity in single frog muscle fibers, Experientia 35 (2): 227–228.

    Article  Google Scholar 

  • Ter Keurs, H. E. D. J., Iwazumi, T., and Pollack, G. H., 1978, The sarcomere length-tension relation in skeletal muscle, J. Gen. Physiol 72: 565–592.

    Article  Google Scholar 

  • Yeh, Y., Baskin, R. J., Lieber, R. L., and Roos, K. P., 1980, Theory of light diffraction by single skeletal muscle fibers, Biophys. J 29: 509–522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

McCarter, R. (1981). Studies of Sarcomere Length by Optical Diffraction. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8196-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8196-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8198-3

  • Online ISBN: 978-1-4684-8196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics