Advertisement

Nuclear Magnetic Resonance Studies of Muscle Constituents in Living Tissue

  • C. Tyler Burt

Abstract

One interesting and rapidly expanding area of research is the use of nuclear magnetic resonance (NMR) to study biological systems in vivo and in vitro. Such studies often overlap the fields of biology, biochemistry, and physics; consequently, one sees such research approached from many different viewpoints. After an initial section describing the terms to be used, this chapter will discuss the phenomena occurring in terms of the biology and biochemistry involved. It will, however, be necessary at times to discuss the physical parameters being measured to show how they relate to the biological concepts.

Keywords

Nuclear Magnetic Resonance Signal Frog Muscle Nuclear Magnetic Resonance Tube Frog Skeletal Muscle Saturation Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G., and Radda, K., 1980, Mapping of metabolites in whole animals by “P NMR using surface coils, Nature (London) 283: 167.CrossRefGoogle Scholar
  2. Annesley, T. M., and Walker, J. R., 1980, Energy metabolism of skeletal muscle containing cyclocreatine, J. Biol. Chem. 255: 3924.Google Scholar
  3. Bârâny, M., Chalovich, J. M., Burt, C. T., and Glonek, T., 1981, Nuclear magnetic resonance studies of muscle, in: Diseases of the Motor Unit: Proceedings of the 6th International Conference of the Muscular Dystrophy Association (D. L. Schotland, ed.). Houghton Mifflin, Pacific Palisades, California (in press).Google Scholar
  4. Beall, P. T., Hazlewood, C. F., and Rao, P. N., 1976, NMR patterns of intracellular water as a function of HeLa cell cycle, Science 192: 904.CrossRefGoogle Scholar
  5. Belton, P. S., Jackson, R. R., and Packer, K. J., 1972, Pulsed NMR studies of water in striated muscle. I. Transverse nuclear spin relaxation times and freezing effects, Biochim. Biophys. Acta 286: 16.CrossRefGoogle Scholar
  6. Belton, P. S., Packer, K. J., and Sellwood, I. C., 1973, Pulsed NMR studies of water in striated muscle. II. Spin-lattice relaxation times and the dynamics of the non-freezing fraction of water, Biochim. Biophys. Acta 304: 56.CrossRefGoogle Scholar
  7. Bendall, J. R.. 1951, The shortening of rabbit muscles during rigor mortis: Its relation to the breakdown of adenosine triphosphate and creatine phosphate and muscular contraction, J. Physiol. (London) 114: 71.Google Scholar
  8. Bendel, P., Lai, C. M., and Lauterbur, P. C., 1980, “P spectroscopic zeugmatography of phosphorus metabolites, J. Magn. Reson. 38: 343.Google Scholar
  9. Berendsen, H.J. C., and Edzes, H. T., 1973, The observation and general interpretation of sodium magnetic resonance in biological material, Ann. N. Y. Acad. Sci. 204: 459.CrossRefGoogle Scholar
  10. Bratton, C. B., Hopkins, A. L., and Weinberg, J. W., 1965, Nuclear magnetic resonance studies of living muscle, Science 147: 738.CrossRefGoogle Scholar
  11. Brown, T. R., Ugurbil, K., and Shulman, R. G., 1977, 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. U.S.A. 74: 5551.Google Scholar
  12. Brown, T. R., Gadian, D. G., Garlick, P. B., Radda, G. K., Seeley, P. J., and Styles, P., 1978, Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR, in: Frontiers of Biological Energetics, Vol. 2 ( L. Dutton, J. Leigh, and A. Scarpa, eds.), pp. 1341–1349, Academic Press, New York.Google Scholar
  13. Burt, C. T., Glonek, T., and Bârâny, M., 1976, Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle, Biochemistry 15: 4850.CrossRefGoogle Scholar
  14. Burt, C. T., Glonek, T., and Bârâny, M., 1976, Analysis of phosphate metabolities, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance, J. Biol. Chem. 251: 2584.Google Scholar
  15. Burt, C. T., Glonek, T., and Bârâny, M., 1977, Analysis of intact muscle by phosphorus nuclear magnetic resonance, in: Contractile Systems in Non-Muscle Tissues ( S. V. Perry, A. Margreth, and R. S. Adelstein, eds.), p. 341, North-Holland, Amsterdam and Oxford.Google Scholar
  16. Burt, C. T., Chalovich, J. M., Danon, M. J., Glonek, T., and Bârâny, M., 1978, Phosphorus nuclear magnetic resonance of diseased muscle, in: Frontiers of Biological Energetics ( L. Dutton, J. Leigh, and A. Scarpa, eds.), pp. 1371–1378, Academic Press, New York.Google Scholar
  17. Burt, C. T., Cohen, S. M., and Bârâny, M., 1979, Analysis of intact tissue with “P NMR, Anna. Rev. Biophys. Bioeng. 8: 1.CrossRefGoogle Scholar
  18. Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J., 1978, Phosphorus nuclear-magnetic resonance studies of compartmentation in muscle, Biochem. J. (London) 170: 103.Google Scholar
  19. Chalovich, J. M., Burt, C. T., Cohen, S. M., Glonek, T., and Bârâny, M., 1977, Identification of an unknown “P nuclear magnetic resonance from dystrophic chicken as L-serine ethanolamine phosphodiester, Arch. Biochem. Biophys. 182: 683.CrossRefGoogle Scholar
  20. Civan, M. M., and Shporer, M., 1975, Pulsed nuclear magnetic resonance study of 170, ZD and ‘H of water in frog striated muscle, Biophys. J. 15: 299.CrossRefGoogle Scholar
  21. Civan, M. M., and Shporer, M., 1978, NMR of sodium-23 and potassium-39 in biological systems, in: Biological Magnetic Resonance, Vol. 1 ( L. J. Berlener and J. Reuben, eds.), pp. 1–32, Plenum Press, New York.Google Scholar
  22. Civan, M. M., McDonald, G. G., Pring, M., and Shporer, M., 1976, Pulsed nuclear magnetic resonance study of 39K in frog striated muscle, Biophys. J. 16: 1385.CrossRefGoogle Scholar
  23. Civan, M. M., Achlama, A. M., and Shporer, M., 1978, The relationship between the transverse and longitudianal nuclear magnetic resonance relaxation rates of muscle water, Biophys. J. 21: 127.CrossRefGoogle Scholar
  24. Cohen, S. M., and Burt, C. T., 1977, 31P nuclear magnetic relaxation studies of phophocreatine in intact muscle: Determination of intracellular free magnesium, Proc. Natl. Acad. Sci. U.S.A. 74: 4271.Google Scholar
  25. Cohen, S. M., Ogawa, S., Rottenberg, H., Glynn, P., Yamane, T., Broun, T. R., and Shulman, R. G., 1978, 3iP nuclear magnetic resonance studies of isolated rat liver cells, Nature (London) 273: 5663.Google Scholar
  26. Cohen, S. M., Ogawa, S., and Shulman, R. G., 1979, i3C NMR studies of gluconeogensis in rat liver cells: Utilization of labeled glycerol by cells from euthyroid and hyperthyroid rats, Proc. Natl. Acad. Sci. U.S.A. 76: 1603.Google Scholar
  27. Cooke, R., and Wien, R., 1971, The state of water in muscle tissue as determined by proton nuclear magnetic resonance, Biophys. J. 11: 1002.CrossRefGoogle Scholar
  28. Cope, F. W., 1967, NMR evidence for complexing of Na+ in muscle, kindey and brain, and by actomyosin: The relation of cellular complexing of Na+ to water structure and to transport kinetics, J. Gen. Physiol. 50: 1353.CrossRefGoogle Scholar
  29. Cope, F. W., 1969, Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain, Biophys. J. 9: 303.CrossRefGoogle Scholar
  30. Cope, F. W., and Damadian, R., 1974, Biological ion exchanger resins. IV. Evidence for potassium association with fixed charges in muscle and brain by pulsed nuclear magnetic resonance of 3°K, Physiol. Chem. Phys. 6: 17.Google Scholar
  31. Damadian, R., 1971, Tumor detection by nuclear magnetic resonance, Science 171: 1151.CrossRefGoogle Scholar
  32. Damadian, R., and Cope, F. W., 1973, Potassium neclear magnetic resonance relaxations in muscle and in normal E. coli and a potassium transport mutant, Physiol. Chem. Phys. 5: 511.Google Scholar
  33. Dawson, J., Gower, D., Kretzschmar, M. K., and Wilkie, D. K., 1975, Heat production and chemical change in frog sartorius: A comparison of R. pipiens and R. temporaria, J. Physiol. (London) 254: 41 P.Google Scholar
  34. Dawson, J., Gadian, D. G., and Wilkie, D. R., 1977, Contractraction and recovery of living muscles studied by 31P nuclear magnetic resonance, J. Physiol. (London) 267: 703.Google Scholar
  35. Dawson, M. J., Gadian, D. G., and Wilkie, D. R., 1978, Muscular fatigue investigated by phosphorus nuclear magnetic resonance, Nature (London) 274: 861.CrossRefGoogle Scholar
  36. Dawson, M. J., Gadian, D. G., and Wilkie, R., 1980, Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance, J. Physiol. (London) 299: 465.Google Scholar
  37. DeKrijff, B., Morris, G. A., and Cullis, P. R., 1980, Application of 31P NMR saturation transfer techniques to investigate phospholipid motion and organization in model and biological membrane, Biochim. Biophys. Acta. 598: 206.CrossRefGoogle Scholar
  38. Dwek, R. A., 1973, Nuclear Magnetic Resonance in Biochemistry, Clarendon Press, Oxford.Google Scholar
  39. Dwek, R. A., Campbell, I. D., Richards, R. E., and Williams, R. J. P., 1977, NMR in Biology, Academic Press, New York.Google Scholar
  40. Edzes, H. T., and Samulski, E. T., 1978, The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle, J. Magn. Reson. 31: 207.Google Scholar
  41. Evans, E. E., and Kaplan, N. 0., 1977, “P nuclear magnetic resonance studies in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 74: 4909.Google Scholar
  42. Fabiato, A., and Fabiato, F., 1975, Effects of magnesium on contractile activation of skinned cardiac cells, J. Physiol. (London) 249: 497.Google Scholar
  43. Fales, J. T., 1973, Effect of stimulation frequency on total heat production of frog sartorius, Am. J. Physiol. 224: 737.Google Scholar
  44. Farrar, T. C., and Becker, E. D., 1971, Pulse and Fourier Transform Nuclear Magnetic Resonance, Academic Press, New York.Google Scholar
  45. Fossel, E. T., and Ingwall, J. S., 1978, Protection of high energy levels in heart during severe hypoxia, Biophys. J. 21: 34a.Google Scholar
  46. Fossel, E. T., Ingwall, J. S., Goldman, M. R., and Pohost, G. M., 1978, Fluoride, a new marker of myocardial injury: A 19-F nuclear magnetic resonance study, Circ. Res. 58 (II): 5.Google Scholar
  47. Fossel, E. T., Morgan, H. E., and Ingwall, J. S., 1980, Measurement of change in high energy phosphates in the cardiac cycle using gated 31P nuclear magnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 77: 3654.CrossRefGoogle Scholar
  48. Fung, B. M., 1977, Carbon-13 and proton magnetic resonance of mouse muscle, Biophys. J. 19: 315.CrossRefGoogle Scholar
  49. Fung, B. M., Durham, D. K., and Wassil, D. A., 1975, The state of water in biological systems as studied by proton and deuterium relaxation, Biochim. Biophys. Acta 339: 191.CrossRefGoogle Scholar
  50. Fung, B. M., Ryan, L. M., and Gerstein, B. C., 1980, Varied magnetic field, multiple-pulse, and magic-angle spinning proton nuclear magnetic resonance study of muscle water, Biophys. J. 29: 229.CrossRefGoogle Scholar
  51. Gadian, D., 1977, Nuclear magnetic resonance in living tissue, Contemp. Phys. 18: 351.CrossRefGoogle Scholar
  52. Gadian, D. G., Hoult, D. I., Radda, G. K., Seeley, P. J., chance, B., and Barlow, C., 1976, Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue, Proc. Natl. Acad. Sci. U.S.A. 73: 4446.CrossRefGoogle Scholar
  53. Garlick, P. B., Radda, G. K., Seeley, P. J., and Chance, B., 1977, Phosphorus NMR studies on perfused heart, Biochem. Biophys. Res. Commun. 74: 1256.CrossRefGoogle Scholar
  54. Garlick, P. B., Radda, G. K., and Seeley, P. J., 1979, Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance, Biochem. J. (London) 184: 547.Google Scholar
  55. Gupta, R. K., and Benovic, J. L., 1978, Magnetic resonance studies of the interaction of divalent metal. Biochem. Biophys. Res. Commun. 84: 130.CrossRefGoogle Scholar
  56. Gupta, R. K., and Moore, R. D., 1980, 31P NMR studies of intracellular free Mg in intact frog skeletal muscle, J. Biol. Chem. 255: 3987.Google Scholar
  57. Gupta, R. K., Benovic, J. L., and Rose, E. B., 1978, The determination of the free magnesium level in the human red blood cell by 31P NMR, J. Biol. Chem. 253: 6172.Google Scholar
  58. Hazlewood, C. F., 1979, A view of the significance and understanding of the physical properties of cell-associated water, in: Cell-Associated Water ( W. Drorst-Hansen, ed.), pp. 165–197, Academic Press, New York.Google Scholar
  59. Hazlewood, C. F., Nichols, B. L., and Chamberlain, N. F., 1969a, Physical state of water in skeletal muscle of normal and dystrophic mouse of strain 129, in: Proceedings of the International Congress on Muscle Disease ( J. N. Walton, ed.), pp 279–281, Excerpta Medica, Amsterdam.Google Scholar
  60. Hazlewood, C. F., Nichols, B, L., and Chamberlain, N. F., 1969b, Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle, Nature (London) 222: 747.Google Scholar
  61. Hazlewood, C. F., Chang, D. C., Nichols, B. L., and Woessner, E. E., 1974, Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle, Biophys. J. 14: 583.CrossRefGoogle Scholar
  62. Henderson, T. O., Glonek, T., Hilderbrand, R. L., and Myers, T. C., 1972, Phosphorus-31 nuclear magnetic resonance studies of the phosphonate and phosphate composition of the sea anemone, Bunadomsa sp., Arch. Biochem. Biophys. 149: 484.CrossRefGoogle Scholar
  63. Hollis, D. P., Nunnally, R. L., Jacobus, W. E., and Taylor, G. J., IV, 1977, Detection of regional ischemia in perfused beating hearts by phosphorus nuclear magnetic resonance, Biochem. Biophys. Res. Commun. 75: 1086.CrossRefGoogle Scholar
  64. Homsher, E., Rall, J. A., Wallner, A., and Ricchiute, N. V., 1975, Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions, J. Gen. Physiol. 65: 1.CrossRefGoogle Scholar
  65. Hoult, D. I., 1977, Zeumatography: A criticism of the concepts of a selective pulse in the presence of a field gradient, J. Magn. Reson. 26: 165.Google Scholar
  66. Hoult, D. I., Busby, S. J. W., Gadian, D. G., Radda G. K., Richards, R. E., and Seeley, R. J., 1974, Observation of tissue metabolites using 31P nuclear magnetic resonance, Nature (London) 252: 285.CrossRefGoogle Scholar
  67. Inch, W. R., McCredie, J. A., Knispel, R. R., Thompson, R. T., and Pintar, M., 1974, Water content and proton spin relaxation time for neoplastic and non-neoplastic tissues from mice and humans, J. Natl. Cancer Inst. 52: 353.Google Scholar
  68. Jacobus, W. E., Taylor, G. J., IV, Hollis, D. P., and Nunnally, R. L., 1977, Phosphorus nuclear magnetic resonance of perfused working rat hearts, Nature (London) 265: 756.CrossRefGoogle Scholar
  69. Jaffe, E. K., and Cohn, M., 1977, 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides: Effects of pH and Mgt+ binding, Biochemistry 17: 652.Google Scholar
  70. James, T. L., 1975, Nuclear Magnetic Resonance in Biochemistry, Academic Press, New York.Google Scholar
  71. Kerrick, W., and Donaldson, S. K. B., 1975, The comparative effect of Cat+ and Mgt+ on tension generation in the fibers of skinned frog skeletal muscle and mechanically disrupted rat ventricular cardiac muscle, Pfluegers Arch. 358: 195.CrossRefGoogle Scholar
  72. Kushmerick, M. J., and Podolsky, R. J., 1969, Ionic mobility in muscle cells, Science 166: 1297.Google Scholar
  73. Kushmerick, M. J., Brown, T., and Crow, M., 1980, Rates of ATP: creatine phosphoryl-transferase reaction in skeletal muscle by 31P nuclear resonance spectroscopy, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1934.Google Scholar
  74. Lauterbur, P. C., 1977, Spatially-resolved studies of whole tissue, organs and organisms by NMR zeugmatography, in: NMR in Biology ( R. R. Dwek, I. D. Campbell, R. E. Richards, and R. K. P. Willaims, eds.), pp. 323–335, Academic Press, New York.Google Scholar
  75. Mathur-De Vré, R., 1979, The NMR studies of water in biological systems, Prog. Biophys. Mol. Biol. 35: 103.Google Scholar
  76. Monoi, H., 1976, Nuclear magnetic resonance of “Na in suspensions of pig erythrocyte ghosts: A comment of the interpretation of tissue 23Na signals, Biophys. J. 16: 979.CrossRefGoogle Scholar
  77. Monoi, H., 1976, Effects of alkali cations on the nuclear magnetic resonance intensity of 23Na in rat liver homogenate, Biophys. J. 16: 1349.CrossRefGoogle Scholar
  78. Navon, G., Ogawa, S., Shulman, R. G., and Yamane, T., 1977, 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells, Proc. Natl. Acad. Sci. U.S.A. 74: 87.Google Scholar
  79. Neville, M. C., and Wyssbrod, H. R., 1977, Spin-lattice relaxation times for 13C in isotope-enriched glycine accumulated in frog muscle, Biophys. J. 17: 267.CrossRefGoogle Scholar
  80. Norton, R. S., 1979, Identification of mollusc metabolites by natural-abundance ‘3C NMR studies of whole tissue and tissue homogenates, Comp. Biochem. Physiol. B 63: 67.CrossRefGoogle Scholar
  81. Nunnally, R. L., and Hollis, D. P., 1979, Adenosine triphosphate compartmentation in living hearts: A phosphorus nuclear magnetic resonance saturation transfer study, Biochemistry 18: 3642.CrossRefGoogle Scholar
  82. Pearson, R. T., Derbyshire, W., and Blanshard, J. M. V., 1972, An NMR investigation of rigor in porcine muscle, Biochem. Biophys. Res. Commun. 48: 873.CrossRefGoogle Scholar
  83. Pearson, R. T., Duff, I. D., Derbyshire, W., and Blanshard, J. M. V., 1974, An NMR investigation of rigor in porcine muscle, Biochim. Biophys. Acta 362: 188.CrossRefGoogle Scholar
  84. Polimeni, P., and Page, E., 1973, Magnesium in heart muscle, Circ. Res. 33: 367.CrossRefGoogle Scholar
  85. Poole-Wilson, P. A., 1978, Measurement of myocardial intracellular pH in pathological states, J. Mol. Cell. Cardiol. 10: 511.CrossRefGoogle Scholar
  86. Pople, J. A., Schneider, W. G., and Berbstein, H. J., 1959, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York.Google Scholar
  87. Raaphorst, G. P., Kruuv, J., and Pintar, M. M., 1975, Nuclear magnetic resonance study of mammalian cell water, Biophys. J. 15: 391.CrossRefGoogle Scholar
  88. Radda, G. K., and Seeley, P. J., 1979, Recent studies on cellular metabolism by nuclear magnetic resonance, Annu. Rev. Physiol. 41: 749.CrossRefGoogle Scholar
  89. Rall, J. A., Homsher, E., Wallner, A., and Mommaerts, W. F. H. M., 1976, A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscles, J. Gen. Physiol. 68: 13.CrossRefGoogle Scholar
  90. Rao, B. D. N., and Cohn, M., 1977, 31P nuclear magnetic resonance of bound substrate of arginine kinase reaction, J. Biol. Chem. 252: 3344.Google Scholar
  91. Roberts, J. D., 1961, An Introduction to the Analysis of Spin-Spin Splitting in High Resolution Nuclear Magnetic Resonance Spectra, W. A. Benjamin, New York.Google Scholar
  92. Salhany, J. M., Yamane, T., Shulman, R. G., and Ogawa, S., 1975, High resolution 31P nuclear magnetic resonance studies of intact yeast cells, Proc. Natl. Acad. Sci. U.S.A. 72: 4966.CrossRefGoogle Scholar
  93. Salhany, J. M., Preper, G. M., Wu, S., Todd, G. L., Calyton, F. C., and Eliot, R. S., 1979, 31 PGoogle Scholar
  94. nuclear magnetic resonance measurements of cardiac pH in perfused guinea-pig hearts, J. Mol. Cell. Cardiol. 11;601.Google Scholar
  95. Seeley, P. J., Busby, S. J. W., Gadian, D. G., Radda, G. K., and Richards, R. E., 1976, A new approach to metabolite compartmentation in muscle, Biochem. Soc. Trans. 4: 62.Google Scholar
  96. Shporer, M., and Civan, M. M., 1974, Effect of temperature and field strength on the NMR relaxation times of 23Na in frog striated muscles, Biochim. Biophys. Acta 354: 291.CrossRefGoogle Scholar
  97. Shporer, M., and Civan, M. M., 1974, NMR study of “O from H2170 in human erythrocytes, Biochim. Biophys. Acta 385: 81.CrossRefGoogle Scholar
  98. Shporer, M., and Civan, M. M., 1977, Structuring of water and immobilization of ions within the intracellular fluids: The contribution of N.M.R. spectroscopy, Carr. Top. Memb. Tramp. 9: 169.Google Scholar
  99. Shporer, M., Haas, N., and Civan, M. M., 1976, Pulsed nuclear magnetic resonance study of “O from H2”0 in rat lymphocytes, Biophys. J. 16: 601.Google Scholar
  100. Sykes, B. D., Hull, W. E., and Snyder, G. H., 1978, Experimental evidence for the role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins, Biophys. J. 21: 137.CrossRefGoogle Scholar
  101. Thienes, C. H., and Haley, T.J.,1972, Clinical Toxicology, 176–179, Lea and Febiger, Philadelphia. Ugurbil, K., Brown, T. R., Den Hollander, J. Q., Glynne, P., and Shulman, R. G., 1978, HighGoogle Scholar
  102. Ugurbil, K., Brown, T. R., Den Hollander, J. Q., Glynne, P., and Shulman, R. G., 1978, High resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 75:3742.Google Scholar
  103. Wong, S. S., DiMicco, J. A., Standaert, D. G., and Dretchen, K. L., 1977, Beneficial effects of fluorocarbon emulsion media on the function of neuromuscular preparations in-vitro, J. Gen. Physiol. 69: 655.CrossRefGoogle Scholar
  104. Wyrwicz, A. M., Burt, C. T., and Konchigeri, H. N., 1979, Interaction of halogenated anesthetics and blood components, Abstracts of the XIth International Congress of Biochemistry.Google Scholar
  105. Yeh, H. J. C., Brinley, F. J., Jr., and Becker, E. D., 1973, Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle, Biophys. J. 13: 56.CrossRefGoogle Scholar
  106. Yoshizaki, K., 1978, Phosphorus nuclear magnetic resonance studies of phosphorus metabolites in frog muscle, J. Biochem. (Tokyo) 84: 11.Google Scholar
  107. Yoshizaki, K., Nishikawa, H., Yamada, S., Morimoto, T., and Witari, H., 1979, Intracellular pH measurement in frog muscle by means of “P nuclear magnetic resonance, Jpn. J. Physiol. 29: 211.CrossRefGoogle Scholar
  108. Zipp, A., James, T. L., Kuntz, I. D., and Shohet, S. B., 1976, Water proton magnetic resonance studies of normal and sickle erythrocytes, Biochim. Biophys. Acta 428: 291.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • C. Tyler Burt
    • 1
  1. 1.Department of ChemistryReed CollegePortlandUSA

Personalised recommendations