Contractile Function as a Determinant of Muscle Growth

  • Radovan Zak


One of the characteristics of a muscle is its ability to adapt to the extent and type of work it is required to perform, both in health and in disease. The adaptive response of muscle to altered physiological demands can take several forms: (1) changes in size, such as hypertrophy of existing muscle cells secondary to elevated afterload in the myocardium; (2) changes in the relative amount of constituent proteins, such as an increase in the cytochrome C content produced by endurance training; (3) changes in the properties of constituent proteins, such as appearance of the “slow” myosin isozyme after stimulation of fast muscles with the frequency that normally occurs in nerves that supply slow muscles; and (4) a combination of the foregoing changes, such as the hyperthyroid state in the rabbit, in which the size of the heart and its cytochrome C content are increased and in which synthesis of a new molecular form of myosin is initiated.


Light Chain Satellite Cell Myosin Light Chain Contractile Function Muscle Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo, S., Zani, B., Siracusa, G., and Molinaro, M., 1976, Expression of differentiative traits in the absence of cell fusion during myogenesis in culture, Cell Differ. 5: 53.CrossRefGoogle Scholar
  2. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 68: 2703.CrossRefGoogle Scholar
  3. Adelstein. R S., Conti, M. A., Johnson, G., Pastan, I., and Pollard, T. D., 1972, Isolation and characterization of myosin from cloned mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 69: 3693.CrossRefGoogle Scholar
  4. Amphlett, G. W., Perry S. V., Suska, J., Brown, M., and Vrbova, G., 1975, Cross innervation and the regulatory system of rabbit soleus muscle, Nature (London) 257: 602.CrossRefGoogle Scholar
  5. Amphlett, G. W., Syska, H., and Perry, S. V., 1976, The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle, FEBS LETT. 63: 22.CrossRefGoogle Scholar
  6. Arndt, I., and Pepe, F. A., 1975, Antigenic specificity of red and white muscle myosin, J. Histochem. Cytochem. 23: 159.CrossRefGoogle Scholar
  7. Askanas, V., Shafiq, S., and Milhorat, A., 1972, Histochemistry of cultured aneural chick muscle: Morphological maturation without differentiation of fiber types, Exp. Neurol. 37: 218.CrossRefGoogle Scholar
  8. Bârâny, M., 1967, ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physicol. 50: 197.CrossRefGoogle Scholar
  9. Bârâny, M., and Close, R. I., 1971, The transformation of myosin in cross-innervated rat muscles, J. Physiol. 213: 455.Google Scholar
  10. Benoff, S., and Nadal-Ginard, B., 1979, Most myosin heavy chain mRNA in L6E9 rat myotubes has a short poly (A) tail, Proc. Natl. Acad. Sci. U.S.A. 76: 1853.CrossRefGoogle Scholar
  11. Beranek, R., Hnfk, P., and Vrbovâ, G., 1957, Denervation atrophy of various skeletal muscles in rats, Physiol. Bohemoslov. 6: 200.Google Scholar
  12. Bischoff, R., and Holtzer, H., 1969, Mitosis and the processes of differentiation of myogenic cells in vitro, J. Cell Biol. 41: 188.CrossRefGoogle Scholar
  13. Bischoff, R., and Holtzer, H., 1970, Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyurdine, J. Cell Biol. 44: 134.CrossRefGoogle Scholar
  14. Buckingham, M. E. 1977, Muscle protein synthesis and its control during the differentiation of skeletal muscle cells in vitro, Int. Rev. Biochem. 15: 269.Google Scholar
  15. Buckingham, M. E., Caput, N., Cohen, A., Whalen, R. G., and Gros, F., 1974, The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture, Proc. Natl. Acad. Sci. U.S.A. 71: 1466.CrossRefGoogle Scholar
  16. Buckley, P. A., and Konigsberg, I. R., 1973, Myogenic fusion and the duration of the postmitototic gap (G,), Dev. Biol. 37: 193.CrossRefGoogle Scholar
  17. Bugaisky, L., and Zak, R., 1979, Cellular growth of cardiac muscle after birth, Tex. Rep. Biol. Med. 39: 123.Google Scholar
  18. Buller, A., Eccles, J., and Eccles, R., 1960a, Differentiation of fast and slow muscles in the cat hind limb, J. Physiol. (London) 150: 399.Google Scholar
  19. Buller, A., Eccles, J., and Eccles, R., 1960b, Interaction between motoneurones and muscles in respect of the characteristic speeds of their responses, J. Physiol. (London) 150: 417.Google Scholar
  20. Buller, A. J., Mommaerts, W. F. H. M., and Seraydarian, K., 1969, Enzymatic properties of myosin in fast and slow twitch muscles of the cat following cross-innervation, J. Physiol. 205: 581.Google Scholar
  21. Carrow, R. E., Brown, R. E., and Van Huss, W. D., 1967, Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats, Anat. Rec. 159: 33.CrossRefGoogle Scholar
  22. Chi, J. C. H., Rubenstein, N., Strahs, K., and Holtzer, H., 1975a, Synthesis of myosin heavy and light chains in muscle cultures, J. Cell Biol. 67: 523.CrossRefGoogle Scholar
  23. Chi, J. C., Fellini, S. A., and Holtzer, H., 1975b, Differences among myosins synthesized in non-myogenic cells, presumptive myoblasts, and myoblasts, Proc. Natl. Acad. Sci. U.S.A. 72: 4999.CrossRefGoogle Scholar
  24. Chiu, J.-F., Brade, W. P., Thomson, J., Tsai, Y.-H., and Hnilica, L. S., 1975, Nonhistone protein phosphorylation in normal and neoplastic rat liver chromatin, Exp. Cell Res. 91: 200.CrossRefGoogle Scholar
  25. Chizzonite, R. A., Everett, A. W., Clark, W. A., Jakovcic, S., Rabinowitz, M., and Zak, R., 1980, Immunological differences between cardiac myosin from normal and thyrotoxic rabbits as detected by monoclonal antibodies, J. Cell Biol. 87: 260a.Google Scholar
  26. Claycomb, W. C., 1975, Biochemical aspects of cardiac muscle differentiation: Deoxyribonucleic acid synthesis and nuclear cytoplasmic deoxyribonucleic acid polymerase activity, J. Biol. Chem. 250: 3229.Google Scholar
  27. Claycomb, W. C., 1976a, Biochemical aspects of cardiac muscle differentiation: Possible control of deoxyribonucleic acid synthesis and call differentiation by adrenergic innervation and cyclic adenosine 3’,5’-monophosphate, J. Biol. Chem. 251: 6082.Google Scholar
  28. Claycomb, W. C., 1976b, Poly (adenosine diphosphate ribose) polymerase activity and nicotonamide adenine dinucleotide in differentiating cardiac muscle, Biochem J. 154: 387.Google Scholar
  29. Costill, D. L., Daniels, J., Evans, W., Fink, E. W., Krahenbuhl, G., and Saltin, B., 1976, Skeletal muscle enzymes and fiber composition in male and female track athletes, J. Appl. Physiol. 40: 149.Google Scholar
  30. Cummins, P., and Perry, S. V., 1974, Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle, Biochem. J. 141: 43.Google Scholar
  31. Cutilletta, A. F., Aumont, M.-C., Nag, A. C., and Zak, R., 1977, Separtaion of muscle and non-muscle cells from adult rat myocardium: An application to the study of RNA polymerase, J. Mol. Cell. Cardiol. 9: 399.CrossRefGoogle Scholar
  32. Cutilletta, A. F., Rudnik, M., and Zak, R., 1978, Muscle and non-muscle cell RNA polymerase activity during the development of myocardial hypertrophy, J. Mol. Cell. Cardiol. 10: 677.CrossRefGoogle Scholar
  33. Albis, A., Pantaloni, C., and Bechet, J.J., 1979a, An electrophoretic study of native myosin isoenzymes and of their subunit content, Eur. J. Biochem. 99: 261.CrossRefGoogle Scholar
  34. d’Albis, A., Pantaloni, C., and Bechet, J.-J., 1979b, Structural relationship of myosin isoenzymes: Proteolytic digestion pattern of heavy chain components from fast muscles, and comparison with other muscle types, FEBS LETT. 106: 81.CrossRefGoogle Scholar
  35. Dhoot, G. K., and Perry, S. V., 1979, Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle, Nature (London) 278: 714.CrossRefGoogle Scholar
  36. Dhoot, G. K., Gell, P., and Perry, S. V., 1978, The localization of the different forms of troponin I in skeletal and cardiac muscle cells, Exp. Cell Res. 117: 357.CrossRefGoogle Scholar
  37. Dhoot, G. K., Fearson, N., and Perry, S. V., 1979, Polymorphic forms of troponin T and troponin C and their localization in striated muscle cell type, Exp. Cell Res. 122: 339.CrossRefGoogle Scholar
  38. Doering, M., and Fischman, D., 1974, The in vitro cell fusion of embryonic chick muscle without DNA synthesis, Dev. Biol. 36: 225.CrossRefGoogle Scholar
  39. Dowell, R. T., and McManus, R. E., 1978, Pressure-induced cardiac enlargment in neonatal and adult rats: Left ventricular functional characteristics and evidence of cardiac muscle cell proliferation in the neonate, Circ. Res. 42: 303.CrossRefGoogle Scholar
  40. Doyle, C. M., Zak, R., and Fischman, D. A., 1974, The correlation of DNA synthesis and DNA polymerase activity in the developing chick heart, Dev. Biol. 33: 133.CrossRefGoogle Scholar
  41. Dubowitz, V., 1965, Enzyme histochemistry of skeletal muscle, J. Neurol. Neurosurg. Psychiat. 28: 516.CrossRefGoogle Scholar
  42. Edgerton, V. R., Simpson, D. R., Barnard, R. J., and Peter, J. B., 1970, Phosphorylase activity in acutely exercised muscle, Nature (London) 225: 866.CrossRefGoogle Scholar
  43. Elzinga, M., and Lu, R. C., 1976, Comparative amino acid sequence studies of actin, in: Contractile Systems in Non-Muscle Tissue (S. V. Perry, A. Margreth, and R. S. Adelstein, ed.), pp. 29–37, North-Holland, Amsterdam.Google Scholar
  44. Emerson, C. P., and Beckner, S. K., 1975, Activation of myosin synthesis in fusing and mononucleated myoblasts, J. Mol. Biol. 93: 431.CrossRefGoogle Scholar
  45. Everett, A. W., and Zak, R., 1980, Control of protein synthesis and degradation in normal and diseased myocardium, in: Drug-induced Heart Diseases ( M. Bristow, ed.), pp. 63–80, Elsevier, Amsterdam.Google Scholar
  46. Fine, R. E., and Blitz, A. L., 1975, A chemical comparison of tropomyosins from musde and non-muscle tissues, J. Mol. Biol. 95: 447.CrossRefGoogle Scholar
  47. Fischman, D. A., 1972, Development of striated muscle, in: The Structure and Function of Muscle, Vol. 1 ( G. H. Boume, ed.), pp. 75–178, Academic Press, New York.Google Scholar
  48. Flink, I. L., and Morkin, E., 1977, Evidence for a new cardiac myosin species in thyrotoxic rabbit, FEBS LETT. 81: 391.CrossRefGoogle Scholar
  49. Flink, I. L., Morkin, E., and Elzinga, M., 1977, Cyanogen bromide peptide from bovine cardiac myosin containing two essential thiols, FEBS LETT. 84: 261.CrossRefGoogle Scholar
  50. Flink, I. L., Rader, J. H., Banerjee, S. K., and Morkin, E., 1978, Atrial and ventricular cardiac myosins contain different heavy chain species, FEBS LETT. 94: 125.CrossRefGoogle Scholar
  51. Flink, I. L. Rader, J. H., and Morkin, E., 1979, Thyroid hormone stimulates synthesis of a cardiac myosin isozymes, J. Biol. Chem. 254: 3105.Google Scholar
  52. Florini, J. R., and Dankberg, F. L., 1971, Changes in RNA and protein synthesis during induced cardiac hypertrophy, Biochemistry 10: 530.CrossRefGoogle Scholar
  53. Floros, J., Chang, H., and Baserga, R., 1978, Stimulated DNA synthesis in frog nuclei by cytoplasmic extracts of temperature sensitive mammalian cells, Science 201: 651.CrossRefGoogle Scholar
  54. Fogel, M., and Defendi, V., 1967, Infection of muscle cultures from various species with oncogenic DNA viruses (SV40 and polyoma), Proc. Natl. Acad. Sci. U.S.A. 58: 967.CrossRefGoogle Scholar
  55. Garrels, J. I., and Gibson, W., 1976, Identification and characterization of multiple forms of actin, Cell 9: 793.CrossRefGoogle Scholar
  56. Gauthier, G. F., and Lowey, S., 1979, Distribution of myosin isoenzymes among skeletal muscle fiber types, J. Cell Biol. 81: 10.CrossRefGoogle Scholar
  57. Gauthier, G. F., Lowey, S. and Hobbs, A. W., 1978, Fast and slow myosin in developing muscle fibers, Nature (London) 274: 25.CrossRefGoogle Scholar
  58. Gibson, R., and Harris, P., 1974, The in vitro and in vivo effects of polyamines on cardiac protein biosynthesis, Cardiovasc. Res. 8: 668.CrossRefGoogle Scholar
  59. Goldberg, A. L., 1967, Protein synthesis in tonic and phasic skeletal muscles, Nature (London) 216: 1219.CrossRefGoogle Scholar
  60. Goldspink, G., 1972, Postembryonic growth and differentiation of striated muscle, in The Structure and Function of Muscle, Vol. 1 ( G. H. Bourne, ed.), pp. 181–236, Academic Press, New York.Google Scholar
  61. Goldstein, M. A., Claycomb, W. C., and Schwartz, A., 1974, DNA synthesis and mitosis in well-differentiated mammalian cardiocytes, Science 183: 212.CrossRefGoogle Scholar
  62. Gollnick, P. D., Armstrong, R. B., Saubert, C. W., Piehl, K., and Saltin, B., 1972, Enzyme activity and fiber composition in skeletal muscles of untrained and trained men, J. Appt. Physiol. 33: 312.Google Scholar
  63. Gordon, T., and Vrbovâ, G. 1975, The influence of innervation on the differentiation of contractile speed of developing chick muscles, Pfluegers Arch. 360: 199.CrossRefGoogle Scholar
  64. Gordon, T., Purves, R. D., and Vrbovâ, G., 1977, Differentiation of electrical and contractile properties of slow and fast muscle fibers, J. Physiol. 269: 535.Google Scholar
  65. Goss, R. J., 1964, Adaptive Growth, pp. 9–360, Academic Press, New York.Google Scholar
  66. Grohmann, D., 1961, Mitotische Wachstumsintensität des embryonalen und fetalen Hühnchenherzens und ihre Bedeutung für die Entstehung von Herzmissbildungen, Z. Zellforsch. 55: 104.CrossRefGoogle Scholar
  67. Grove, D., Zak, R., Nair, K. G., and Aschenbrenner, V., 1969, Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat, Circ. Res. 25: 473.CrossRefGoogle Scholar
  68. Gruenstein, E., and Rich, A., 1975, Non-identity of muscle and non-muscle actins, Boichem. Biophys. Res. Commun. 64: 472.CrossRefGoogle Scholar
  69. Hall-Craggs, E. C. B., and Lawrence, C. A., 1970, Longitudinal fiber division in skeletal musde: A light and electron-microscope study, Z. Zellforsch. 109: 481.CrossRefGoogle Scholar
  70. Hanzlikovâ, V., Mackovâ, E. V., and Hnik, P., 1975, Satellite cells of the rat soleus muscle in the process of compensatory hypertrophy combined with denervation, Cell Tissue Res. 160: 411.CrossRefGoogle Scholar
  71. Harris, H., Watkins, J. F., Ford, C. E., and Schoefl, G. I., 1966, Artifical heterokaryons of animal cells from different species, J. Cell Sci. 1: 1.Google Scholar
  72. Heywood, S. M., and Kennedy, D. S., 1976, Translational control in embryonic musde, Pro. Nucleic Acid Res. 19: 477.CrossRefGoogle Scholar
  73. Heywood, S. M., and Nwagu, M., 1969, Partial characterization of presumptive myosin messenger ribonucleic acid, Biochemistry 8: 3839.CrossRefGoogle Scholar
  74. Hnik, P., 1962, Rate of denervation of muscle atrophy, in: The Denervated Muscles ( E. Gutmann, ed.) pp. 341–375, Publishing House of the Czechoslovakian Academy of Sciences, Prague.Google Scholar
  75. Hnik, P., Jirmanovâ, J., Vyklicky, L., and Zelenâ, J., 1967, Fast and slow muscles of the chick after nerve cross-union, J. Physiol. 193: 309.Google Scholar
  76. Hnik, P., Mackova, E. V., Syrovy, I., Holas, M., and Krishna-Reddy, V., 1974, Contractile properties of musile undergoing “compensatory” hypertrophy and its increased susceptibility to denervation and reflex atrophy, Pfluëgers Arch. 349: 171.CrossRefGoogle Scholar
  77. Hoh, J. F. Y., 1978, Light chain distribution of chicken skeletal muscle myosin isoenzymes, FEBS LETT. 90: 297.CrossRefGoogle Scholar
  78. Hoh, J. F. Y., 1979, Developmental changes in chicken skeletal myosin isoenzymes, FEBS LETT. 98: 267.CrossRefGoogle Scholar
  79. Hoh, J. F. Y., and Yeoh, G. P. S., 1979, Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles, Nature (London) 280: 321.CrossRefGoogle Scholar
  80. Hoh, J. F. Y., McGrath, P. A., and Hale, P. T., 1978, Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement, J. Mol. Cell. Cardiol. 10: 1053.CrossRefGoogle Scholar
  81. Hoh, J. F. Y., Yeoh, G. P. S., Thomas, M A. W., and Higginbottom, L., 1979, Structural differences in the heavy chains of rat ventricular myosin isoenzymes, FEBS LETT. 97: 330.CrossRefGoogle Scholar
  82. Holtzer, H., 1970, Myogenesis, in: Cell Differentiation ( O. Schjeide, ed.), pp. 476–503, Van Nostrand Reinhold, New York.Google Scholar
  83. Holtzer, H., Marshal, T. M., and Finck, H., 1957, An analysis of myogenesis by the use of fluorescent antimyosin, J. Biophys. Biochem. Cytol. 3: 705.CrossRefGoogle Scholar
  84. Holtzer, H., Rubenstein, N., Dienstman, S., Chi, J., Biehl, J., and Somlye, A., 1974, Perpective in myogenesis, Biochimie 56: 1575.CrossRefGoogle Scholar
  85. Huszar, G., and Elizinga, M., 1972, Homologous methylated and non-methylated histidine peptides in skeletal and cardiac myosin, J. Biol. Chem. 247: 745.Google Scholar
  86. Ianuzzo, C. D., Gollnick, P. D., and Armstrong, R. B., 1976, Compensatory adaptation of skeletal muscle fiber types to a long-term functional overload, Life Sci. 19: 1517.CrossRefGoogle Scholar
  87. Jean, D. H., Albers, R. W., Guth, L., and Aron, H. J., 1975, Differences between the heavy chains of fast and slow muscle myosin, Exp. Neurol. 49: 750.CrossRefGoogle Scholar
  88. Johnson, L. S., 1974, Non-identical tropomyosin subunits in rat skeletal muscle, Biochim. Biophys. Acta 371: 219.CrossRefGoogle Scholar
  89. Kako, K. J., Varnai, K., and Beznak, M., 1972, RNA synthesis and RNA content of nuclei prepared from hearts during hypertrophy, Cardiovasc. Res. 6: 57.CrossRefGoogle Scholar
  90. Katzberg, A. A., Farmer, B. B., and Harris, R. A., 1977, Predominance of binucleation in isolated rat heart myocytes, Am. J. Anat. 149: 489.CrossRefGoogle Scholar
  91. Keller, L. R., and Emerson, C. P., 1980, Synthesis of adult myosin light chains by embryonic muscle cultures, Proc. Natl. Acad. Sci. U.S.A. 77: 1020.CrossRefGoogle Scholar
  92. Kelly, A. M., and Zacks, S. J., 1969a, The fine structure of motor endplate morphogenesis, J. Cell Biol. 42: 154.CrossRefGoogle Scholar
  93. Kelly, A. M., and Zacks, S. I., 1969b, The histogenesis of rat intercostal muscle, J. Cell Biol. 42: 135.CrossRefGoogle Scholar
  94. Konigsberg, I. R., 1963, Clonal analysis of myogenesis, Science 140: 1273.CrossRefGoogle Scholar
  95. Konigsberg, I. R., 1971, Diffusion-mediated control of myoblast fusion, Dev. Biol. 26: 133.CrossRefGoogle Scholar
  96. Krelhaus, W., Gibson, K. I., and Harris, P., 1975, The effects of hypertrophy, hypobaric conditions, and diet on myocardial ornithine decarboxylase activity, J. Mol. Cell. Cardiol. 7: 63.CrossRefGoogle Scholar
  97. Kun, E., Chang, A. C. Y., Sharma, M. L., Ferro, A. M., and Nitecki, D., 1976, Covalent modification of proteins by metabolites of NAD+, Proc. Natl. Acad. Sci. U.S.A. 73: 3131.CrossRefGoogle Scholar
  98. Laurent, G. J., Sparrow, M. P., Bates, P. C., and Millward, D. J., 1978, Turnover of muscle protein in the fowl (Gallus domesticus), Biochem. J. 176: 393.Google Scholar
  99. Leger, J. J., Klotz, C., Cavaille, F., and Marotte, F., 1979, Structural differences between the heavy chains of myosin subfragment-1 from bovine, porcine and human hearts, FEBS LETT. 106: 157.CrossRefGoogle Scholar
  100. Lewis, W. G., and Smillie, L. B., 1980, The amino acid sequence of rabbit cardiac tropomyosin, J. Biol. Chem. 251: 6854.Google Scholar
  101. Li, J. B., and Goldberg, A. L., 1976, Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles, Am. J. Physiol. 231: 441.Google Scholar
  102. Limas, C. J., and Chan-Stier, C., 1978, Myocardial chromatin activation in experimental hyperthyroidism in rats: Role of nuclear non-histone proteins, Circ. Res. 42: 311.CrossRefGoogle Scholar
  103. Lompre, A. M., Scwartz, K., d’Albis, A., Lacombe, G., Van Thiem, N., and Swynghedauw, B., 1979, Myosin isoenzyme redistribution in chronic heart overload, Nature (London) 282: 105.CrossRefGoogle Scholar
  104. Lowey, S., and Risby, D., 1971, Light chains from fast and slow muscle myosins, Nature (London) 234: 81.CrossRefGoogle Scholar
  105. Mackovâ, E., and Hník, P., 1973, Compensatory muscle hypertrophy induced by tenotomy of synergists is not true working hypertrophy, Physiol. Bohemoslov. 22: 43.Google Scholar
  106. Manasek, F. J., 1968, Mitosis in developing cardiac muscle, J. Cell Biol. 37: 191.CrossRefGoogle Scholar
  107. Manasek, F. J., Burnside, M. B., and Watermann, R. E., 1972, Myocardial cell shape change as a mechanism of embryonic heart looping, Dev, Biol. 29: 349.CrossRefGoogle Scholar
  108. Manasek, F. J., Kulikowski, R., and Fitzpatrick, L., 1978, Cytodifferentiation: A causal antecedant of looping, Birth Defects 14: 161.Google Scholar
  109. Markert, C. L., 1975, Biology of isozymes, in Isozymes, Vol. 1 ( C. L. Markert, ed.), pp. 1–9, Academic Press, New York.CrossRefGoogle Scholar
  110. Marston, S. B., and Taylor, E. W., 1980, Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles, J. Mol. Biol. 139: 573.CrossRefGoogle Scholar
  111. Masaki, T., 1974, Immunochemical comparison of myosin from chicken cardiac, fast white, slow red, and smooth muscle, J. Biochem. 76: 441.Google Scholar
  112. Masaki, T., and Yoshizaki, C., 1974, Differentiation of myosin in chick embryos, J. Biochem. 76: 123.Google Scholar
  113. Mauro, A., 1961, Satellite cell of skeletal muscle fiber, J. Biophys. Biochem. Cytol. 9: 493.CrossRefGoogle Scholar
  114. Mommaerts, W., Seraydarian, K., Suh, M., Kean, C., and Buller, A., 1977, The conversion of some biochemical properties of mammalian skeletal muscles following cross-reinnervation, Exp. Neurol. 55: 637.CrossRefGoogle Scholar
  115. Morgan, H. E., and Wildenthal, K., 1980, Protein turnover in heart and skeletal muscle (symposium), Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 7.Google Scholar
  116. Morkin, E., 1979, Stimulation of cardiac myosin adenosine triphosphate in thyrotoxicosis, Circ. Res. 44: 1.CrossRefGoogle Scholar
  117. Moss, F. P., and Leblond, C. P., 1971, Satellite cells as the source of nuclei in muscles of growing rats, Anat. Rec. 170: 421.CrossRefGoogle Scholar
  118. Nair, K. G., Cutilletta, A. F., Zak, R., Koide, T., and Rabinowitz, M., 1968, Biochemical correlates of cardiac hypertrophy: Experimental model: Changes in heart weight, RNA content, and nuclear RNA polymerase activity, Circ. Res. 23: 451.CrossRefGoogle Scholar
  119. Neffgen, J. F., and Korecky, B., 1972, Cellular hyperplasia and hypertrophy in cardiomegalies induced by anemia in young and adult rats, Circ. Res. 30: 104.CrossRefGoogle Scholar
  120. Okazaki, K., and Holtzer, H., 1966, Myogenesis: Fusion, myosin synthesis, and the mitotic cycle, Proc. Natl. Acad. Sci. U.S.A. 56: 1484.CrossRefGoogle Scholar
  121. O’Neil, M. C., and Stockdale, F. E., 1972, A kinetic analysis of myogenesis in vitro, J. Cell Biol. 52: 52.CrossRefGoogle Scholar
  122. Paterson, B., and Strohman, R. C., 1972, Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle, Dev. Biol. 29: 113.CrossRefGoogle Scholar
  123. Patrick, J., Heinemann, S., Lindstrom, J., Schubert, D., and Steinbach, J., 1972, Appearance of acetylcholine receptors during differentiation of a myogenic cell line, Proc. Natl. Acad. Sci. U.S.A. 69: 2762.CrossRefGoogle Scholar
  124. Pelloni-Müller, G., Ermini, M., Jenny, E., 1976, Myosin light chains of developing fast and slow rabbit skeletal muscle, FEBS LETT. 67: 68.CrossRefGoogle Scholar
  125. Perry, S. V., 1974, Variation in the contractile and regulatory proteins of the myofibril with muscle type, in: Exploratory Concepts in Muscular Dystrophy, Vol. II ( A. T. Milhorat, ed.), pp. 319–328, Excerpta Medica, Amsterdam.Google Scholar
  126. Perry, S. V., and Grand, J. A., 1979, Mechanisms of contraction, Br. Med. Bull. 35: 219.Google Scholar
  127. Pette, D., and Schnez, U., 1977a, Coexistence of fast and slow type myosin light chains in single muscle fibers during transformation as induced by long term stimulation, FEBS LETT. 83: 128.CrossRefGoogle Scholar
  128. Pette, D., and Schnez, U., 1977b, Myosin light chain patterns of individual fast and slow-twitch fibres of rabbit muscles, Histochemistry 54: 97.CrossRefGoogle Scholar
  129. Pette, D., Smith, M. E., Staudte, H. W., and Vrbovâ, G., 1973, Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles, Pflüegers Arch. 388: 257.CrossRefGoogle Scholar
  130. Pette, D., Muller, W., Leisner, E., and Vrbovâ, G., 1976, Time dependent effects on contractile properties, fibre populations, myosin light chains and enzymes of energy metabolism in intermittenetly and continuously stimulated fast twitch muscles of the rabbit, Pflüegers Arch. 364: 103.CrossRefGoogle Scholar
  131. Pluskal, M. G. and Pennington, R. J., 1976, Protein synthesis by ribosomes from normal and denervated red and white muscles, Exp. Neurol. 51: 574.CrossRefGoogle Scholar
  132. Price, K. M., Cummins, P., and Littler, W. A., 1979, Atrial and ventricular human myosin during development, J. Mol. Cell. Cardiol. 11: 47.CrossRefGoogle Scholar
  133. Redfern, P. A., 1970, Neuromuscular transmission in newborn rats, J. Physiol. (London) 209: 701.Google Scholar
  134. Robbins, J., and Heywood, S. M., 1978, Quantification of myosin heavy-chain mRNA during myogenesis, Eur. J. Biochem. 82: 601.CrossRefGoogle Scholar
  135. Rowe, R. W. D., 1968, Effect of low nutrition on size of striated muscle fibers in the mouse, J. Exp. Zool. 167: 353.CrossRefGoogle Scholar
  136. Rowe, R. W. D., and Goldspink, G., 1969, Muscle fiber growth in five different muscles in both sexes of mice. II. Dystrophic mice, J. Anat. 104: 531.Google Scholar
  137. Roy, R. K., Potter, J. D., and Sarkar, S. 1976, Characterization of the regulatory complex of chick embryonic muscles: Polymorphism of tropomyosin in adult and embryonic fibers, Biochem. Biophys. Res. Commun. 70: 28.CrossRefGoogle Scholar
  138. Roy, R. K., Stréter, F. A., and Sarkar, S., 1979, Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles, Dev. Biol. 69: 15.CrossRefGoogle Scholar
  139. Rubinstein, N. A., and Holtzer, H., 1979, Fast and slow muscles in tissue culture synthesise only fast myosin, Nature (London) 280: 323.CrossRefGoogle Scholar
  140. Rubinstein, N. A., and Kelly, A. M., 1978, Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat, Dev. Biol. 62: 473.CrossRefGoogle Scholar
  141. Rubinstein, N., Pepe, F., and Holtzer, H., 1977, Myosin types during the development of embryonic chicken fast and slow muscles, Proc. Natl. Acad. Sci. U.S.A. 74: 4524.CrossRefGoogle Scholar
  142. Rubinstein, N. A., Mabuchi, K., Pepe, F., Salmons, S., Gergely, J., and Sréter, F., 1978, Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles, J. Cell Biol. 79: 252.CrossRefGoogle Scholar
  143. Rushbrook, J. I., and Stracher, A., 1979, Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate polyacrylamide gel electrophoresis and peptide mapping, Proc. Natl. Acad. Sci. U.S.A. 76: 4331.CrossRefGoogle Scholar
  144. Russel, D. N., Shiverick, K. T., Hamrell, B. B., and Alpert, N. R., 1971, Polyamine synthesis during initial phases of stress-induced cardiac hypertrophy, Am. J. Physiol. 221: 1287.Google Scholar
  145. Salmons, S., and Sréter, F. A., 1976, Significance of impulse activity in the transformation of skeletal muscle type, Nature (London) 263: 30.CrossRefGoogle Scholar
  146. Sarkar, S., and Cooke, P. H., 1970, In vitro synthesis of light and heavy polypeptide chains in myosin, Biochem. Biophys. Res. Commun. 41: 918.CrossRefGoogle Scholar
  147. Sarkar, S., Sréter, F. A., and Gergely, J., 1971, Light chains of myosins from white, red, and cardiac muscles, Proc. Natl. Acad. Sci. U.S.A. 68: 946.CrossRefGoogle Scholar
  148. Sarkar, S., Mukherjee, S. P., Sutton, A., Mondal, H., and Chen, V., 1973, Isolation of messenger RNA for myosin heavy chain, Prep. Biochem. 3: 583.CrossRefGoogle Scholar
  149. Sasaki, R., Morishita, T., and Yamagata, S., 1968, Mitosis of heart muscle cells in normal rats, Tohoku, J. Exp. Med. 96: 405.CrossRefGoogle Scholar
  150. Shiverick, K. T., Hamrell, B. B., and Alpert, N. R., 1976, Structural and functional properties of myosin associated with the compensatory cardiac hypertrophy in the rabbit, J. Mol. Cell. Cardiol. 8: 837.CrossRefGoogle Scholar
  151. Short, F. A., 1969, Protein synthesis by red and white muscles in vitro: Effect of insulin and animal age, Am. J. Physiol. 217: 307.Google Scholar
  152. Sobel, B. L., and Kaufman, S., 1970, Enhanced RNA polymerase activity in skeletal muscle undergoing hypertrophy, Arch. Biochem. Biophys. 137: 469.CrossRefGoogle Scholar
  153. Sréter, F. A., Seidel, J. C., and Gergely, J., 1966, Studies on myosin from red and white skeletal muscles of the rabbit. 1. Adenosine triphosphatase activity, J. Biol. Chem. 241: 5772.Google Scholar
  154. Sréter, F. A., Holtzer, S., Gergely, J., and Holtzer, H., 1972, Some properties of embryonic myosin, J. Cell Biol. 55: 586.CrossRefGoogle Scholar
  155. Sréter, F. A., Gergely, J., Salmons, S., and Romanul, F., 1973, Synthesis by fast muscle of myosin light chains characteristic of slow muscle in response to long-term stimulation, Nature (London) New Biol. 241: 17.Google Scholar
  156. Sréter, F. A., Balint, M., and Gergely, J., 1975a, Structural and functional changes of myosin during development: Comparison with adult fast, slow, and cardiac myosin, Dev. Biol. 46: 317.CrossRefGoogle Scholar
  157. Sréter, F. A., Elizinge, M., Mabuchi, K., Salmons, S., and Luff, A., 1975b, The N-methylhistidine content of myosin in stimulated and cross-reinnervated skeletal muscle of the rabbit, FEBS LETT. 57: 107.CrossRefGoogle Scholar
  158. Sréter, F. A., Luff, A., and Gergely, J., 1975, Effect of cross-innervation on physiological parameters and on properties of myosin and sarcoplasmic reticulum of fast and slow muscles of the rabbit, J. Gen. Physiol. 66: 811.CrossRefGoogle Scholar
  159. Stockdale, F. E., 1970, Changing levels of DNA polymerase activity during the development of skeletal muscle tissue in vivo, Dev. Biol. 21: 462.CrossRefGoogle Scholar
  160. Stockdale, F. E., and Holtzer, H., 1961, DNA synthesis and myogenesis, Exp. Cell Res. 24: 508.CrossRefGoogle Scholar
  161. Stockdale, F. E., and O’Neill, M. C., 1972, Repair DNA synthesis in differentiated embryonic muscle cells, J. Cell Biol. 52: 589.CrossRefGoogle Scholar
  162. Strehler, B. L., Konigsberg, I. R., and Kelly, F. E., 1963, Ploidy of myotube nuclei developing in vitro as determined with a recording double-beam micro-spectrophotometer, Exp. Cell Res. 32: 232.CrossRefGoogle Scholar
  163. Syrovÿ, I., 1976, The relationship between ATPase activity and light chains of myosin in developing, adult and denervated muscles of several animal species, Physiol. Bohemoslov. 25: 295.Google Scholar
  164. Syrovÿ, I., and Zelenâ, J., 1975, The onset and progress of transformation of avian slow into fast muscles under the neural influence, Pflüegers Arch. 360: 121.CrossRefGoogle Scholar
  165. Syska, H., Perry, S. V., and Trayer, I. P., 1974, A new method of preparation of tropopin I (inhibitory protein) using affinity chromatography: Evidence for three different forms of troponin I in striated muscle, FEBS LETT. 40: 953.CrossRefGoogle Scholar
  166. Thomas, L. L., and Alpert, N. R., 1977, Functio, integrity of the SHl site in myosin from hypertrophied myocardium, Biochim. Biophys. Acta 481: 680.CrossRefGoogle Scholar
  167. Turto, H., 1977, Experimental cardiac hypertrophy and the synthesis of poly(A)-containing RNA and of myocardial proteins in the heart: The effect of digitoxin treatment, Acta Physiol. Scand. 101: 114.CrossRefGoogle Scholar
  168. Umeda, P., Zak, R., and Rabinowitz, M., 1980, Purification of messenger RNA for fast and slow myosin heavy chains by indirect immunoprecipitation of polysomes from embryonic chick skeletal muscle, Biochemistry 19: 1955.CrossRefGoogle Scholar
  169. Vandekerchkove, J., and Weber, K., 1978, Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins, Proc. Natl. Acad. Sci. U.S.A. 75: 1106.CrossRefGoogle Scholar
  170. Wahrmann, J. P., Drugeon, G., Delain, E., and Delain, D., 1976, Gene expression during the differentiation of myogenic cells of the L3 line, Biochimie 58: 551.CrossRefGoogle Scholar
  171. Weeds, A. G., and Burridge, K., 1975, Myosin from cross-reinnervated cat muscles: Evidence for reciprocal transformation of heavy chains, FEBS LETT. 57: 203.CrossRefGoogle Scholar
  172. Weeds, A. G., Trentham, D. R., Kean, C. J., and Buller, A. J., 1974, Myosin from crossreinnervated cat muscles, Nature (London) 247: 135.CrossRefGoogle Scholar
  173. Weeds, A. G., Hall, R., and Spurway, N. C. S., 1975, Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle, FEBS LETT. 49: 320.CrossRefGoogle Scholar
  174. Whalen, R. G., and Sell, S. M., 1980, Myosin from fetal hearts contains the skeletal muscle embryonic light chain, Nature (London) 286: 731.CrossRefGoogle Scholar
  175. Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1976, Protein synthesis and actin heterogeneity in calf muscle cells in culture, Proc. Natl. Acad. Sci. U.S.A. 73: 2018.CrossRefGoogle Scholar
  176. Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1978, Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells, J. Mol. Biol. 126: 415.CrossRefGoogle Scholar
  177. Whalen, R. G., Schwartz, K., Bouveret, P., Sell, S., and Gros, F., 1979, Contractile protein isozymes in muscle development: Identification of an embryonic form of myosin heavy chain, Proc. Natl. Acad. Sci. U.S.A. 76: 5197.CrossRefGoogle Scholar
  178. Wikman-Coffelt, J., and Srivastava, S., 1979, Differences in atrial and ventricular myosin light chains, FEBS LETT. 106: 207.CrossRefGoogle Scholar
  179. Wilkinson, J. M., 1980, Troponin C from rabbit slow skeletal and cardiac muscles is the product of a single gene, Eur. J. Biochem. 103: 179.CrossRefGoogle Scholar
  180. Wilkinson, J. M., and Grand, R. J. A., 1978, Comparison of amino acid sequence of troponin I from different striated muscles, Nature (London) 271: 31.CrossRefGoogle Scholar
  181. Yaffe, D., and Dym, H., 1972, Gene expression during differentiation of contractile muscle fibers, Cold Spring Harbor Symp. Quant. Biol. 37: 543.CrossRefGoogle Scholar
  182. Yaffe, D., and Gershon, D., 1967, Multinucleated muscle fibres: Induction of DNA synthesis and mitosis by polyoma virus infection, Nature (London) 215: 421.CrossRefGoogle Scholar
  183. Yavich, M. P., Lerman, M. I., and Meerson, F. Z., 1976, Incorporation in vitro of labeled amino acids into myocardial ribosomes in early and late stages of compensatory hyperfunctioning of heart, Biokhimiya 41: 2110.Google Scholar
  184. Zak, R., 1974, Development and proliferative capacity of cardiac muscle cells, Circ. Res. 3435: 11–17.Google Scholar
  185. Zak, R., and Rabinowitz, M., 1979, Molecular aspects of cardiac hypertrophy, Annu. Rev. Physiol. 41: 539.CrossRefGoogle Scholar
  186. Zak, R., Kizu, A., and Bugaisky, L., 1979, Cardiac hypertrophy: Its characteristics as a growth process, Am. J. Cardiol. 44: 941.CrossRefGoogle Scholar
  187. Zhinkin, L. N., and Andreeva, L. F., 1963, DNA synthesis and nuclear reproduction during embryonic development and regeneration of muscle tissue, J. Embryol. Exp. Morphol. 2: 353.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Radovan Zak
    • 1
  1. 1.Departments of Medicine and Phamacological and Physiological SciencesThe University of ChicagoChicagoUSA

Personalised recommendations