Advertisement

The Effect of Epinephrine on Oxygen Consumption, Overall Energy Metabolism, and Substrate Utilization in Rats

  • L. Benthem
  • J. van der Leest
  • W. P. Meeuwsen
  • H. van der Molen
  • J. P. Zock
  • W. G. Zijlstra
  • A. B. Steffens
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

In the past 25 years the relationship between plasma free fatty acids (FFA) and glucose metabolism has been studied extensively (Wolfe et al., 1988). In several studies an invers relationship between the availability of FFA and the rate of glucose oxidation has been recognized (Randle et al., 1963; Jansson, 1980). The underlying mechanism, however, has not yet been completely clarified. Several hypotheses have been proposed. Jansson (1980) suggests that FFAs entering the muscle cell by diffusion, a concentration-dependent process, influence glucose oxidation by inhibiting two enzyms, Pyruvate Dehydrogenase (PDH) and Phosphofructokinase (PFK). PDH is inhibited by acetyl-CoA from the breakdown of FFA, PFK by citrate formed from acetyl-CoA in the first step of the citric acid cycle. The rise in concentration of these metabolites resulting from the increased breakdown of FFA thus leads to an enhanced inhibition of the degradation of glucose.

Keywords

Plasma Insulin Blood Glucose Concentration Respiratory Quotient Plasma Insulin Level Free Fatty Acid Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galbo, H., 1980, “Hormonal and Metabolic Adaptation to Exercise”, Thieme, Stuttgart.Google Scholar
  2. Henquin, J.C., Malvaux, P., and Lambert, A.E., 1974, Glucagon Immunoassay Using Polyethylene Glycol to Precitipate Antibodybound Hormone, Diabeto- logica, 10: 61.CrossRefGoogle Scholar
  3. Jansson, E., 1980, Diet and Muscle Metabolism in Man, CATA Physiol. Scand., Suppl. 487.Google Scholar
  4. Juschtschenko, A.J., 1909, Der Einfluss des Thyreoidins, Spermins und Adrenalins, sowie der Entfernung der Schilddrüse und der Testikeln auf die Oxydationsprozesse, den Atmungsgasaustausch und die Giftigkeit des Harns bei Tieren, Biochem. Z., 15: 365.Google Scholar
  5. Mulder, C., Schouten, J.A., and Popp-Snijders, C., Determination of Free Fatty Acids: A Comparative Study of the Enzymatic Versus the Gas Chromatografic and the Colorimetrie Method, J. Clin. Chem. Clin. Biochem., 21: 823.Google Scholar
  6. Musch, T.I., Bruno, A., Bradford, G.E., Vayonis, A., and Moore, R.L., 1988, Measurements of Metabolic Rates in Rats: a Comparison of Techniques, J. Appl. Physiol., 65: 964.PubMedGoogle Scholar
  7. Porte, D. Jr., 1967, A Receptor Mechanism for the Inhibition of Insulin Release in Man, J. Clin. Invest., 46: 86.PubMedCrossRefGoogle Scholar
  8. Randle, P.J., Garland, P.B., Hales, C.N., et al., 1963, The Glucose and Fatty Acid Cycle: Its Role in Insulin Sensitivity and the Metabolic Disturbance of Diabetes Mellitus, Lancet 1: 785.PubMedCrossRefGoogle Scholar
  9. Scheurink, A.J.W., Steffens, A.B., Benthem, L., 1988, Central and Peripheral Adrenoceptors Affect Glucose, Free Fatty Acids, and Insulin in Exercising Rats, Am. J. Physiol., 255: R255.Google Scholar
  10. Scheurink, A.J.W., Steffens, A.B., Dreteler, G.H., Benthem, L., and Bruntink, R., 1989a, Experience Affects Exercise-Induced Changes in Catecholamines, Glucose, and FFA, Am. J. Physiol., 256: R169.PubMedGoogle Scholar
  11. Scheurink, A.J.W., Steffens, A.B., Bouritius, H., Dreteler, G.H., Bruntink, R., Remie, R., and Zaagsma, J., 1989b, Adrenal and Sympathetic Catecholamines in Exercising Rats, Am. J. Physiol., 256: R155.PubMedGoogle Scholar
  12. Sonne, B., and Galbo, H., 1980, Simultaneous Determinations of Metabolic and Hormonal Responses, Heart Rate, Temperature and Oxygen Uptake in Running Rats, Acta Physiol. Scand., 109: 201.PubMedCrossRefGoogle Scholar
  13. Steffens, A.B., 1969a, Blood Glucose and FFA Levels in Relation to Meal Pattern in the Normal Rat and the Ventromedial Hypothalamic Lesioned Rat, Physiol. Behav., 4: 215.CrossRefGoogle Scholar
  14. Steffens, A.B., 1969b, A Method for Frequent Sampling of Blood and Infusion of Fluids in the Rat Without Disturbing the Animal, Physiol. Behav. 4: 833.CrossRefGoogle Scholar
  15. Steffens, A.B., Damsma, G., van der Gugten, J., and Luiten, P.G.M., 1984, Circulating Free Fatty Acids, Insulin, and Glucose During Chemical Stimulation of Hypothalamus in Rats, Am. J. Physiol., 247: E765.PubMedGoogle Scholar
  16. Westerterp, K.R., 1976, “How Rats Economize”, Thesis, Groningen.Google Scholar
  17. Wolfe, B.M., Klein, S., Peters, E.J., Schmidt, B.F., and Wolfe, R.R., 1988, Effect of Elevated Free Fatty Acids on Glucose Oxidation in Normal Humans, Metabolism, 37: 323.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Benthem
    • 1
  • J. van der Leest
    • 1
  • W. P. Meeuwsen
    • 1
  • H. van der Molen
    • 1
  • J. P. Zock
    • 1
  • W. G. Zijlstra
    • 1
  • A. B. Steffens
    • 2
  1. 1.Department of PhysiologyUniversity of GroningenThe Netherlands
  2. 2.Department of Animal PhysiologyUniversity of GroningenThe Netherlands

Personalised recommendations