Metabolic and Developmental Responses of the Calf to a Chronic Hypoxic Episode in the Immediate Newborn Period

  • Howard D. Tyler
  • Harold A. Ramsey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)


Oxygen consumption of the newborn increases 3-fold above fetal levels in the first 2 days (Dawes and Mott, 1959), with much of this increase occurring in the first 12 hours (Acheson et al., 1957). This is due in large part to energy expenditures for maintenance of thermal neutrality (Mount, 1958; Dawes and Mott, 1959; Alexander, 1975). Activity of the gastrointestinal tract also contributes to a significant extent, with oxygen consumption rising 3.5-fold in postnatal intestinal tissue at rest (Reeves et al., 1972; Edelstone and Holtzman, 1981b). Oxygen consumption increases an additional 65–72% during digestion (Brodie et al., 1910; Edelstone and Holtzman, 1981a).


Chronic Hypoxia Acute Hypoxia Newborn Period Oxygen Dissociation Curve Postnatal Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G. 1975. Body temperature control in mammalian young. Br. Med. Bull. 31:62–68.PubMedGoogle Scholar
  2. Ballard, F.J. 1971. The development of gluconeogenesis in rat liver. Biochem. J. 124:265–274.PubMedGoogle Scholar
  3. Blanco, C.E., G.S. Dawes, M.A. Hanson and H.B. McCooke. 1984. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J. Physiol. 351:25–37.PubMedGoogle Scholar
  4. Brodie, T.G., W.C. Cullis and W.D. Halliburton. 1910. The gaseous metabolism of the small intestine. Part II. The gaseous exchanges during the absorption of Witte’s peptone. J. Physiol. 40:173–189.PubMedGoogle Scholar
  5. Cross, K.W. and J.L. Malcolm. 1952. Evidence of carotid body and sinus activity in new-born and foetal animals. J. Physiol. 118:10P–11P.PubMedGoogle Scholar
  6. Dawes, G.S. and J.C. Mott. 1959. The increase in oxygen consumption of the lamb after birth. J. Physiol. 146:295–315PubMedGoogle Scholar
  7. Dawkins, M.J.R. 1961. Changes in glucose-6-phosphatase activity in liver and kidney at birth. Nature 191:72–73.PubMedCrossRefGoogle Scholar
  8. Detweiler, D.K. 1984. Regional and fetal circulations. In: M. J. Swenson (Ed): Duke’s Physiology of Domestic Animals, pp 192–206. Comstock Publishing Associates Ithaca.Google Scholar
  9. Edelstone, D.I. and I.R. Holtzmann. 1981a. Oxygen consumption by the gastrointestinal tract and liver in conscious newborn lambs. Am. J. Physiol. 240:G297–G304.PubMedGoogle Scholar
  10. Edelstone, D.I. and I.R. Holtzmann. 1981b. Gastrointestinal tract O2 uptake and regional blood flows during digestion in conscious newborn lambs. Am. J. Physiol. 241:G289–G293.Google Scholar
  11. Eden, G.J. and M.A. Hanson. 1987. Maturation of the respiratory response to acute hypoxia in the newborn rat. J. Physiol. 392:1–9.PubMedGoogle Scholar
  12. Eigenmann, V.U.J.E., E. Grunert and U. Koppe. 1981. Zur Spätasphyxie des Kalbes. Berl. Münch. Tierarztl. Wschr. 94:249–254.Google Scholar
  13. Gahlenbeck, H., H. Frerking, A.M. Rathschlag-Schaefer and H. Bartels. 1968. Oxygen and carbon dioxide exchange across the cow placenta during the second part of pregnancy. Resp. Physiol. 4:119–131.CrossRefGoogle Scholar
  14. Hudson, D.J. 1966. Fitting segmented curves whose join points have to be estimated. J. Am. Stat. Assoc. 61: 1097–1129.CrossRefGoogle Scholar
  15. Maurer-Schweitzer, V.H., U. Wilhelm and K. Walser. 1977. Blutgas-und Säure-Basen-Verhältnisse bei lebensfrischen Kaiserschnittkälbern in den ersten 24 Lebensstunden. Berl. Munch. Tierarztl. Wschr. 90:215–218.Google Scholar
  16. Moore, W.E. 1969. Acid-base and electrolyte changes in normal calves during the neonatal period. Am. J. Vet. Res. 30:1133–1138.PubMedGoogle Scholar
  17. Mortola, J.P. 1987. Dynamics of breathing in newborn mammals. Physiol. Rev. 67:187–243.PubMedGoogle Scholar
  18. Mortola, J.P., C.A. Morgan and V. Virgona. 1986. Respiratory adaptation to chronic hypoxia in newborn rats. J. Appl. Physiol. 61:1329–1336.PubMedGoogle Scholar
  19. Reeves, J.T., F.S. Daoud and M. Gentry. 1972. Growth of the fetal calf and its arterial pressure, blood gases, and hematologic data. J. Appl. Physiol. 32:240–244.PubMedGoogle Scholar
  20. Reeves, J.T. and J.E. Leathers. 1964. Circulatory changes following birth of the calf and the effect of hypoxia. Circ. Res. 15:343–354.PubMedCrossRefGoogle Scholar
  21. Schlerka, V.G., W. Petschenig and J. Jahn. 1979. Untersuchungen über die Blutgase, den Säure-Basen-Haushalt, Elektrolytgehalt, einige Enzyme und Inhaltsstoffe im Blut neugeborener Kälber. Dtsch. Tierarztl. Wschr. 86:95–100.Google Scholar
  22. Stott, G.H., D.B. Marx, B.E. Menefee and G.T. Nightengale. 1979. Colostral immunoglobulin transfer in calves. I. Period of absorption. J. Dairy Sci. 62:1632–1638.PubMedCrossRefGoogle Scholar
  23. Villee, C.A. and D.D. Hagerman. 1958. Effect of oxygen deprivation on the metabolism of fetal and adult tissues. Am. J. Physiol. 194:457–464.PubMedGoogle Scholar
  24. Waizenhofer, V.H. and M. Mulling. 1978. Untersuchungen über das Verhalten von pHakt., PO2 und PCO2 im venösen, kapillaren und arteriellen Blut neugeborener Kälber. Berl. Münch. Tierarztl. Wschr. 91:173–176.Google Scholar
  25. Warnes, D.M., R.F. Seamark and F.J. Ballard. 1977. The appearance of gluconeogenesis at birth in sheep. Biochem. J. 162:627–634.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Howard D. Tyler
    • 1
  • Harold A. Ramsey
    • 1
  1. 1.Department of Animal ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations