Advertisement

Effect of Long-Term Hypoxia on Oxygen Transport Properties of Blood in Pregnant Guinea Pigs

  • C. Geisen
  • K. Mottaghy
  • I. Scheffen
  • P. Kaufmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

Chronic hypoxia is associated with diverse and complex adaption mechanisms, including increases in haemoglobin and 2, 3-diphosphoglycerate (2,3-DPG) concentrations and tissue capillary density, as well as changes in cardiac output and other compensatory mechanisms (Kitanaka et al., 1988). During pregnancy adaptive physiological changes include increases in cardiac output, ventilation and oxygen consumption (Gilbert et al., 1979). Adjustment to hypoxia during pregnancy is complicated by the fact, that compensatory mechanisms have to insure a sufficient O2 supply to the maternal as well as the fetal organism. Placental O2 transfer depends on a number of factors, including the diffusion capacity of the placenta, the O2 status, the perfusion rate and morphology of uterine and umbilical vessels, furthermore the O2 affinity and O2 capacity of maternal as well as fetal blood (Christensen et al., 1986; Longo et al., 1972; Moll and Kastendieck, 1977)

Keywords

Shear Rate Fetal Blood Hypoxic Animal Shear Flow Condition Prolonged Contact Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, H. and Harms, H., 1959, Sauerstoffdissoziationskurven des Blutes von Säugetieren, Pflügers Arch. 268: 334–365.PubMedCrossRefGoogle Scholar
  2. Christensen, P., Grønlund, J. and Carter A.M., 1986, Placental gas exchange in the guinea-pig: fetal blood gas tensions following the reduction of maternal oxygen capacity with carbon monoxide, J. Develop. Physiol. 8: 1–9.Google Scholar
  3. Gilbert, R.G., Cummings, L.A., Juchau, M.R. and Longo, L.D., 1979, Placental diffusing capacity and fetal development in exercising or hypoxic guinea pigs, J. Appl. Physiol.: Respirat. Environ Exercise Physiol. 46 (4): 828–834.Google Scholar
  4. Kitanaka, T., Gilbert, R.D. and Longo, L.D., 1988, Maternal and Fetal Responses to Long-term Hypoxemia in Sheep, in: “The Endocrine Control of the Fetus,” W. Künzel and A. Jensen, eds.38–63, Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
  5. Longo, L. D., Hill, E. P. and Power, G. G., 1972, Theoretical analysis of factors affecting placental O2 transfer, Am. J. Physiol., 222 (3): 730–739.PubMedGoogle Scholar
  6. Moll, W. and Kastendieck, E., 1977, Transfer of N2O, CO and HTO in the artificially perfused guine-pig placenta, Resp. Physiol. 29: 283–302.CrossRefGoogle Scholar
  7. Mottaghy, K., Cremer, J., and Pescarmona, J. P., 1987, Rheo-oxymetrie ein neues Verfahren zur Bestimmung der O2-Transporteigenschaften der Erythrozyten unter Scherbedingungen, in: “Fortschritte in der kardiovaskulären Hämorheologie,” B. E. Strauer, A. M. Ehrly, M. Leschke, eds., Münchner Wissenschaftliche Publikationen, München.Google Scholar
  8. Mottaghy, K., Haest, C.W.M., Cremer, J. and Derissen, W., 1984, Oxygen Uptake Into The Sheared Flowing Blood: Effects Of Red Cell Membranes And Haematocrit, in: “Oxygen Transport To Tissue, Vol. V, “ D. W. Lübbers, H. Acker, E. Leniger-Follert and T. K. Goldstick, eds., Plenum Pub. Corp., New York.Google Scholar
  9. Mottaghy, K., Haest, C.W.M. and Schieuter, H.J., 1982, Effect of red cell rigidity on gas transport by sheared flowing blood, Chem. Eng. Commun. 15: 157–167.CrossRefGoogle Scholar
  10. Mottaghy, K. and Ranse, H.J., 1985, Effect of combined shear, secondary flow and axial flow of blood on oxygen uptake, Chem. Eng. Commun. 36: 269–279.CrossRefGoogle Scholar
  11. Scheffen, I., Kaufmann, P., Philippens, L., Leiser, R., Geisen, C. and Mottaghy, K., 1989, Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia: a morphometrical study, at: “Meeting of the International Society on Oxygen Transport to Tissue”, Göttingen, FRG, July 21–24, 1989.Google Scholar
  12. Schmid-Schönbein, H., 1981, Blood rheologicy and oxygen transport to tissues, in: “Adv. Physiol. Sci. Vol. 25 Oxygen Transport to Tissue,” A. G. B. Kovach, E. Dora, M. Kessler, I. A. Silver, eds., Akademiai Kiado, Budapest.Google Scholar
  13. Schmid-Schönbein, H., 1988, Conceptional proposition for a specific microcirculatory problem: maternal blood flow in hemochorial multivillous placentae as percolation of a “Porpous medium”, in: “Throphoblast Research, Vol. 3,” P. Kaufmann and K. Miller, eds., Plenum Publishing Corporation.Google Scholar
  14. Schmid-Schönbein, H. and Wells, R.E., 1969, Fluid drop-like transition of erythrocytes under shear, Science 165: 288.CrossRefGoogle Scholar
  15. Sick, H. and Gersonde, K., 1980, Rapid Measurement and Computer Analysis of Complete Oxygen Dissociation Curves of Red Blood Cells, J. Clin. Chem. Biochem., 18, 10: 689.Google Scholar
  16. Sick, H. and Gersonde, K., 1985, Continuous Gas-Depletion Technique for Measuring O2-Dissociation Curves of High-Affinity Hemoglobins, Analyt. Biochem. Vol. 146: 277–280.PubMedCrossRefGoogle Scholar
  17. Zander, R. and Schmid-Schönbein, H., 1972, Influence of intracellular convection on the oxygen release by human erythrocytes. Pflügers Arch. 335: 58–73.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. Geisen
    • 1
  • K. Mottaghy
    • 1
  • I. Scheffen
    • 2
  • P. Kaufmann
    • 2
  1. 1.Dept. of Physiology, Medical FacultyTechnical University of AachenAachenGermany
  2. 2.Dept. of Anatomy, Medical FacultyTechnical University of AachenAachenGermany

Personalised recommendations