Skip to main content

Gas Exchange in the Fish Swimbladder

  • Chapter
Oxygen Transport to Tissue XII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 277))

Abstract

Neutral buoyancy is of great advantage to any object in water, a submarine like an animal, since it will help to save energy to avoid sinking or rising. Depending on their composition, fish are usually somewhat denser than the surrounding water, largely because of the skeletal and protein masses (densities around 2–3 and 1.3 g/cm3, respectively) which override the “floating” mass of fat (density 0.9). Thus their overall density is some 5% larger than that of water, and this results in a sinking force of about 5% of their weight, which to overcome in water can be shown to be a formidable energy expenditure (Denton, 1961). There are several ways in which animals have solved this problem to become neutrally buoyant (Denton, 1961), and the swimbladder is one such floating device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bridges, C.R., Hlastala, M.P., Riepl, G., and Scheid, P., 1983, Root effect induced by CO2 and by fixed acid in the blood of the eel Anguilla anguilla, Respir. Physiol., 51: 275–286.

    Article  CAS  Google Scholar 

  • Denton, E.J., 1961, The buoyancy of fish and cephalopods, Progr. Biophys. Biophys. Chem., 11: 177–234.

    CAS  Google Scholar 

  • Denton, E.J., Liddicoat, J.D., and Taylor, D.W., 1972, The permeability to gases of the swimbladder of the conger eel (Conger conger), J. Mar. Biol. Ass. U.K., 52: 727–746.

    Article  CAS  Google Scholar 

  • Fänge, R., 1983, Gas exchange in fish swimbladder, Rev. Physiol. Biochem. Pharmacol., 97: 111–158.

    Article  PubMed  Google Scholar 

  • Farmer, M., Fyhn, H.J., Fyhn, U.E.H., and Noble, R.W., 1979, Occurrence of Root effect hemoglobins in Amazonian fishes, Comp. Biochem. Physiol., 62A, 115–124.

    CAS  Google Scholar 

  • Kobayashi, H., Pelster, B., Piiper, J., and Scheid, P., 1989a, Significance of the Bohr effect for tissue oxygenation in a model with counter-current blood flow, Respir. Physiol. 76: 277–288.

    Article  CAS  Google Scholar 

  • Kobayashi, H., Pelster, B., and Scheid, P., 1989b, Water and lactate movement in the swimbladder of the eel, Anguilla anguilla, Respir. Physiol. (in press).

    Google Scholar 

  • Kobayashi, H., Pelster, B., and Scheid, P., 1989c, Solute back-diffusion raises the gas concentrating efficiency in counter-current flow, Respir. Physiol. (in press).

    Google Scholar 

  • Kuhn, W., Ramel, A., Kuhn, H.J., and Marti, E., 1963, The filling mechanism of the swimbladder. Generation of high gas pressures through hairpin counter-current multiplication, Experientia, 19: 497–552.

    Article  PubMed  CAS  Google Scholar 

  • Niesel, W., and Röskenbleck, H., 1963, Die Bedeutung der Stromgeschwindigkeiten in den Gefäßsystemen der Niere und der Schwimmblase für die Aufrechterhaltung von Konzentrationsgradienten, Pflügers Arch., 277, 302–315.

    Article  CAS  Google Scholar 

  • Pelster, B., Kobayashi, H., and Scheid, P., 1988, Solubility of nitrogen and argon in eel whole blood and its relationship to pH, J. exp. Biol., 135: 243–252.

    PubMed  CAS  Google Scholar 

  • Pelster, B., Kobayashi, H., and Scheid, P., 1989, Metabolism of the perfused swimbladder of European eel: O2, CO2, glucose and lactate balance, J. exp. Biol (in press).

    Google Scholar 

  • Piiper, J., Meyer, M., and Scheid, P., 1984, Dual role of diffusion in tissue gas exchange: blood-tissue equilibration and diffusion shunt, Respir. Physiol, 56: 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J., 1987, Role of diffusion shunt in transfer of inert gases and O2 in muscle, in: “Oxygen Transport to Tissue”, Vol. X, M. Mochizuki, C.R. Honig, T. Koyama, T.K. Golstick and D.F. Bruley, eds., Plenum Press, New York and London, pp. 55–61.

    Google Scholar 

  • Root, R.W., 1931, The respiratory function of the blood of marine fishes, Biol. Bull., 61: 427–546.

    Article  CAS  Google Scholar 

  • Steen, J.B., 1963, The physiology of the swimbladder in the eel Anguilla vulgaris, III. The mechanism of gas secretion, Acta Physiol Scand., 59: 221–241.

    Article  PubMed  CAS  Google Scholar 

  • Steen, J.B., 1970, The swimbladder as a hydrostatic organ, in: “Fish Physiology”, Vol. IV, W.S. Hoar, and D.J. Randall, eds., Academic Press, New York, pp. 413–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Scheid, P., Pelster, B., Kobayashi, H. (1990). Gas Exchange in the Fish Swimbladder. In: Piiper, J., Goldstick, T.K., Meyer, M. (eds) Oxygen Transport to Tissue XII. Advances in Experimental Medicine and Biology, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8181-5_84

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8181-5_84

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8183-9

  • Online ISBN: 978-1-4684-8181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics