Reduction of Gas Solubility in the Fish Swimbladder

  • Bernd Pelster
  • Hirosuke Kobayashi
  • Peter Scheid
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)


The gas filled swimbladder serves many fish as a hydrostatic organ to achieve neutral buoyancy. The gas enters the bladder by diffusion from the swimbladder vessels. The high gas partial pressures necessary for establishing a diffusion gradient from the vessels to the swimbladder is achieved by reducing the solubility of gases in the swimbladder blood. This ‘single concentrating effect’ (Kuhn et al., 1963), the increase in gas partial pressure induced by a change in solubility, is then multiplied by countercurrent multiplication in the rete mirabile (Steen, 1970; Fänge, 1983).


HC03 Concentration Root Effect Countercurrent Multiplication Physical Solubility Blood Metabolite Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bridges, C. R., Hlastala, M. P., Riepl, G., and Scheid, P., 1983, Root effect induced by CO2 and by fixed acid in the blood of the eel, Anguilla anguilla., Respir. Physiol., 51: 275–286.PubMedCrossRefGoogle Scholar
  2. Brittain, T., 1987, The Root effect, Comp. Biochem. Physiol., 86B: 473–481.Google Scholar
  3. Cameron, J. N., 1971, Rapid method for determination of total carbon dioxide in small blood samples, J. Appl. Physiol., 31: 632–634.PubMedGoogle Scholar
  4. Enns, T., Douglas, E., and Scholander, P. F., 1967, Role of the swimbladder rete of fish in secretion in inert gas and oxygen, Adv. Biol. Med. Phys., 11: 231–244.Google Scholar
  5. Fänge, R., 1983, Gas exchange in fish swim bladder, Rev. Physiol. Biochem. Pharmacol., 97: 111–158.PubMedCrossRefGoogle Scholar
  6. Gerth, W. A., and Hemmingsen, E. A., 1982, Limits of gas secretion by the salting-out effect in the fish swimbladder rete, J. Comp. Physiol., 146: 129–136.Google Scholar
  7. Jacobs, W., 1932, Untersuchungen zur Physiologie der Schwimmblase der Fische. II. Die Volumregulation in der Schwimmblase des Flussbarsches, Z. vergl. Physiol., 18: 125–156.Google Scholar
  8. Kobayashi, H., Pelster, B., and Scheid, P., 1989a, Water and lactate movement in the swimbladder of the eel, Anguilla anguilla, Respir. Physiol., in press.Google Scholar
  9. Kobayashi, H., Pelster, B., and Scheid, P., 1989b, Solute back-diffusion raises the gas concentrating efficiency in counter-current flow, Respir. Physiol., in press.Google Scholar
  10. Kuhn, W., Ramel, A., Kuhn, H.J., and Marti, E., 1963, The filling mechanism of the swimbladder generation of high gas pressures through hairpin countercurrent multiplication. Experientia, 19: 497–511.PubMedCrossRefGoogle Scholar
  11. Meyer, M., and Scheid, P., 1980, Solubility of acetylene in human blood determined by mass spectrometry, J. Appl. Physiol., 48: 1035–1037.PubMedGoogle Scholar
  12. Pelster, B., Kobayashi, H., and Scheid, P., 1988, Solubility of nitrogen and argon in eel whole blood and its relationship to pH, J. Exp. Biol., 135: 243–252.PubMedGoogle Scholar
  13. Pelster, B., Kobayashi, H., and Scheid, P., 1989, Metabolism of the perfused swimbladder of European eel: O2, CO2, glucose and lactate balance, J. Exp. Biol., in press.Google Scholar
  14. Piiper, J., Dejours, P., Haab, P., and Rahn, H., 1971, Concepts and basic quantities in gas exchange physiology, Respir. Physiol., 13: 292–304.PubMedCrossRefGoogle Scholar
  15. Root, R. W., 1931, The respiratory function of the blood of marine fishes, Biol. Bull., 61: 427–456.CrossRefGoogle Scholar
  16. Scheid, P., 1983, Respiratory mass spectrometry, in: “Measurement in clinical respiratory physiology”, G. Laszlo and M. F. Sudlow, eds., London, New York: Academic Press, pp. 131–166.Google Scholar
  17. Steen, J. B., 1963a, The physiology of the swimbladder of the eel Anguilla vulgaris. I. The solubility of gases and the buffer capacity of the blood, Acta Physiol. Scand., 58: 124–137.CrossRefGoogle Scholar
  18. Steen, J. B., 1963b, The physiology of the swimbladder in the eel Anguilla vulgaris. III. The mechanism of gas secretion, Acta Physiol. Scand., 59: 221–241.CrossRefGoogle Scholar
  19. Steen, J. B., 1970, The swim bladder as a hydrostatic organ, in: “Fish Physiology”, Vol. IV, W. S. Hoar and D. J. Randall, eds., New York: Academic Press, pp. 413–443.Google Scholar
  20. Tucker, V. A., 1967, Method for oxygen content and dissociation curves on microliter blood samples, J. Appl. Physiol., 23: 410–414.PubMedGoogle Scholar
  21. Wittenberg, J. B., Schwend, M. J., and Wittenberg, B. A., 1964, The secretion of oxygen into the swim-bladder of fish. III The role of carbon dioxide, J. Gen. Physiol., 48: 337–355.PubMedCrossRefGoogle Scholar
  22. Zeidler, R., and Kim, H. D., 1977, Preferential hemolysis of postnatal calf red cells induced by internal alkalinization, J. Gen. Physiol., 70: 385–401.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Bernd Pelster
    • 1
  • Hirosuke Kobayashi
    • 1
  • Peter Scheid
    • 1
  1. 1.Institut für PhysiologieRuhr-Universität BochumBochumGermany

Personalised recommendations