Skip to main content

Support of Hypoxic Renal Cell Volume Regulation by Glycine

  • Chapter
Oxygen Transport to Tissue XII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 277))

Abstract

In vivo measurements of frequency distributions of extracellular PO 2 indicated local regions of tissue hypoxia in the renal cortex. Thus, almost 50% of the values ranged between 24 and 40 mmHg, about 10% were in the range of 10 to 20 mm Hg, and in 3% of the measurements even values between 1 to 10 mm Hg were obtained (Baumgärtl et al., 1972). The marginal oxygen supply of cortical cells was interpreted to be the result of a) the known high metabolic activity of renal cortical cells and b) a reduced vascular oxygen supply due to O2-shunting from descending arterial vasa recta into closely arranged ascending renal veins. Accordingly, at an insufficient arterial oxygen supply local regions of tissue hypoxia became the predominant sites of hypoxic cellular damage (Alcorn et al., 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcorn, D., Emslie, K. R., Ross, B. D., Ryan, G. B., and Tange, J. D., 1981, Selective distal nephron damage during isolated kidney perfusion. Kidney Int., 19:638.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, R. S., Soltoff, S. P., Storey, J. M., and Mandel, L. J., 1980, Improved renal cortical tubule suspension: spectrophotometric study of O2delivery. Am. J. Physiol., 238:F50.

    PubMed  CAS  Google Scholar 

  • Baumgärtl, H., Leichtweiss, H. P., Lubbers, D. W., Weiss, Ch., and Huland, H., 1972, Microvasc.Res. 4:247.

    Article  PubMed  Google Scholar 

  • Brezis, M., Silva, P., and Epstein, F. H., 1984, Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism, Am. J. Physiol. 247:H999.

    PubMed  CAS  Google Scholar 

  • Gronow, G. H. J., Benk, P., and Franke, H., 1984, Effect of anaerobic substrates on post-anoxic cellular functions in isolated tubular segments of rat kidney cortex, Adv. Exp. Med. Biol. 180:403.

    PubMed  CAS  Google Scholar 

  • Gronow, G. H. J., and Cohen, J. J., 1984, Substrate support for renal functions during hypoxia in the perfused rat kidney, Am. J. Physiol. 247:F618.

    PubMed  CAS  Google Scholar 

  • Gronow, G., Skrezek, Ch., and Kossmann, H., Correlation between mitochondrial respiratory dysfunction and Na -reabsorption in the reoxygenated rat kidney, Adv. Exp. Med. Biol. 200:515.

    Google Scholar 

  • Gronow, G., Klause, N., and Mâlyusz, M., 1988, Amino acid — mediated reduction of hypoxic uncoupling of mitochondrial respiration in isolated kidney tubules, Pflügers Arch. 411:R91.

    Google Scholar 

  • Hochachka, P. W., Defense strategies against hypoxia and hypothermia, 1986, Science 231:234.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. P., and Kennedy, F. G., 1982, Intracellular oxygen supply during hypoxia, Am. J. Physiol. 243:C247.

    PubMed  CAS  Google Scholar 

  • Lang, F., Völkl, P., and Paulmichl, M., 1988, How do cells regulate their volume, Pflügers Arch. 411:R4

    Google Scholar 

  • Mályusz, M., and Gronow, G., 1987, Contrasting effects of amino acid mixtures on hypoxic dysfunction in the rat kidney, in: “Molecular Nephrology. Biochemical aspects of kidney function”, Z. Kovacevic and W. G. Guder, eds., Walter de Gruyter, Berlin.

    Google Scholar 

  • Mellors, A., Tappel, L., Sawant, P. L., Desai, I. D., 1967, Mitochondrial swelling and uncoupling of oxidative phosphorylation by lysosomes, Biochim. Biophys. Acta 143:299.

    Article  PubMed  CAS  Google Scholar 

  • Racusen, C. R., Finn, W. F., Whelton, A., and Solez, K., 1985, Mechanisms of lysine-induced acute renail failure in rats, Kidney Int. 27:517.

    Article  PubMed  CAS  Google Scholar 

  • Seglen, P. O., Gordon, P. B., and Poli, A., 1980, Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes, Biochem. Biophys. Acta 630:103.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, J. M., Davis, J. A., Abarzua, M., and Rajan, T., 1987, Cytoprotective effect of glycine and glutathione against hypoxic injury to renal tubules, J. Clin. Invest. 80:1446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Gronow, G., Klause, N., Mályusz, M. (1990). Support of Hypoxic Renal Cell Volume Regulation by Glycine. In: Piiper, J., Goldstick, T.K., Meyer, M. (eds) Oxygen Transport to Tissue XII. Advances in Experimental Medicine and Biology, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8181-5_80

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8181-5_80

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8183-9

  • Online ISBN: 978-1-4684-8181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics