Oxygen Transport Through Lung Surfactant and the Surfactant Specific Proteins

  • Erna Ladanyi
  • Karlheinz Stalder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)


Inhaled oxygen can reach alveolar and capillary cell walls only after having crossed both the so-called lung surfactant surface layer (LSSL) lining the alveoles at the air / water interface, and the underlying aqueous hypophase. The hypophase contains the LSSL precursors: a great variety of phospholipids and neutral lipids organized in different morphological forms, and three specific proteins called Sp-A, Sp-B and Sp-C. Therefore the transport of oxygen to the lung tissue is a rather complicated process, including such steps as the penetration through the air / aqueous interface, diffusion through the obviously viscous subface, and possibly an interaction with some of the LSSL or subphase components.


Oxygen Transport Oxygen Carrier Lung Lavage Drop Mercury Electrode Lung Surfactant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ladanyi, E., Zugravu, E., Tomoaia, M., 1974, Electrochemical Methods in Surface-Activity Studies of Lung Surfactant.I. Polarographic Maximum Suppressing Ability of Lung Surfactant, Int. Arch. Arbeits-med., 33:245CrossRefGoogle Scholar
  2. Ladanyi, E., Stalder, K., 1979, Alternating current-tast-polarographic determination of surface activity of lung surfactant, J. Electroanal. Chem., 99:321CrossRefGoogle Scholar
  3. Ladanyi, E., 1980, Polarographische Elektrosorptions-analyse des oberflächenaktiven Systems der lunge (Lung surfactant), Dissertation, Technische Universität ClausthalGoogle Scholar
  4. Ladanyi, E., Stalder, K., 1980, Changes occuring in the lung surfactant under the action of inhalative occupational substances, Verh. Dtsch. Ges. Arbeitsmed., 20:519Google Scholar
  5. Ladanyi, E., Stalder, K., 1983, Contribution to the medical importance of dusts resulting by the use of agricultural machines, Verh.Dtsch.Ges.Arbeitsmed., 23:523Google Scholar
  6. Ladanyi, E., 1986, Inhalative Noxen und das Surfactant-System der Lunge, Prax.Klin.Pneumol., 40:465PubMedGoogle Scholar
  7. Ladanyi, E., Möbius, D., Stalder, K., von Wichert, P., 1987, Structure of isolated lung surfactant monolayer, Symposium on Membrane Lipids, 20–21 March, Sintra, Portugal, ACTAS do INSTITUTO de BIOQIMICA (in press)Google Scholar
  8. Ladanyi, E., Stalder, K., 1987, Modellversuche zum Ein-fluß von Formaldehyd auf das Lungensurfactant, Verh. Dtsch. Ges. Arbeitsmed., 27:545Google Scholar
  9. Ladanyi, E., 1987, Present knowledge in the field of lung surfactant electrochemistry, J. Bioel. Bioenerg., (in Press)Google Scholar
  10. Ladanyi, E., Miller, I., Popovitz-Biro, R., Marikovsky, J., von Wiehert, P., Müller, B., Stalder, K., 1988, Molecular structure of the extracellular surface-layer of the human lung surfactant, 3d International Symposium, Basic Research on Lung Surfactant, Marburg, 12–14 SeptemberGoogle Scholar
  11. Ladanyi, E., 1988, “Oxygen Transport to Tissue XI”, Plenum, New YorkGoogle Scholar
  12. Ladanyi, E., Suzuki, Möbius, D., Schäfer, K., Stalder, K., Presence, localization and possible role of Sp-A and Sp-B in the human lung surfactant surface layer. An electronmicroscopic study using immuno-gold double labelling, 60 Years of Surfactant Research, Floating congress on the river Rhine, 11–17 November 1989.Google Scholar
  13. Stalder, K., Ladanyi, E., 1980, Changes occuring in the lung surfactant under the action of inhalative occupational substances, Verh. Dtsch. ges. Arbeitsmed., 20:519Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Erna Ladanyi
    • 1
  • Karlheinz Stalder
    • 1
  1. 1.Department of Occupational HealthUniversity of GottingenGöttingenFederal Republic of Germany

Personalised recommendations