Theoretical Analysis of Factors Influencing Recovery of Ventilation Distributions from Inert Gas Washout Data

  • D. Meyer
  • K. Groebe
  • G. Thews
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)


For the quantitative analysis of intraregional ventilation inhomogeneities, one classically applies the inert gas washout method [7,24] in which an inert gas of negligible solubility in blood and tissue is washed into the lungs. After washin is complete, the inspiratory inert gas fraction is set to a smaller value and the time course of the mixed endexpiratory inert gas fraction during the subsequent inert gas washout is recorded. The determinants of this time course are: The endexpiratory alveolar volume at the instant of change in inspiratory inert gas fraction, the anatomical dead space, the gas exchange ratio, the respiratory frequency, the in- and expiratory tidal volumes, and the inhomogeneous distribution of the tidal volume among the alveolar space. For determining this distribution from the time course of mixed endexpiratory inert gas fractions, several methods have been described which may be grouped into two classes: The depeeling methods and mathematically more advanced methods for assessing continuous distributions.


Tidal Volume Dead Space Conducting Airway Alveolar Volume Ventilation Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birath, G.: Respiratory dead space measurements in a model lung and healthy human subjects according to the single breath method. J. Appl. Physiol. 14: 517–520 (1959)Google Scholar
  2. [2]
    Bouhuys, A.: Respiratory dead space. In: Handbook of Physiology, W.O. Fenn and H. Rahn (eds.), sect. 3, vol.1: Respiration. Am. Physiol. Soc, Washington, D.C., 1964, p. 699–714.Google Scholar
  3. [3]
    Beaver, W.L., N. Lamarra, K. Wasserman: Breath-by-breath measurement of true alveolar gas exchange. J. Appl. Physiol. 51: 1662–1675 (1981)PubMedGoogle Scholar
  4. [4]
    Butler, J.P., J.G. Mohler: Estimating a distribution’s central moments: a specific tidal ventilation application. J. Appl. Physiol. 46: 47–52 (1979)PubMedGoogle Scholar
  5. [5]
    Dejours, P., R. Pucinelli, J. Armand, M. Dicharry: Breath-to-breath variations of pulmonary gas exchange in resting man. Respir. Physiol. 1: 265–280 (1966)PubMedCrossRefGoogle Scholar
  6. [6]
    Demedts, M., I. Clarysse, M. de Roo: Scintigraphic evaluation of shape of lung and chest in upright and head-down posture. J. Appl. Physiol. 60: 427–432 (1986)PubMedCrossRefGoogle Scholar
  7. [7]
    Engel, L.H.: Intraregional gas mixing and distribution. In: Gas mixing and distribution in the lung, L.A. Engel and M. Paiva (eds.), Dekker, New York, 1985, p. 287–358.Google Scholar
  8. [8]
    Evans, J.W., D.G. Cantor, J.R. Norman: The dead space in a compartmental lung model. Bull. Math. Biophys. 29: 711–718 (1967)PubMedCrossRefGoogle Scholar
  9. [9]
    Fortune, J.B., P.D. Wagner: Effects of common dead space on inert gas exchange in mathematical models of the lung. J. Appl. Physiol. 47: 896–906 (1979)PubMedGoogle Scholar
  10. [10]
    Fowler, W.S.: Lung function studies. II. The respiratory dead space. Am. J. Physiol. 154: 405–416 (1948)PubMedGoogle Scholar
  11. [11]
    Gomez, D.M.: A mathematical treatment of the distribution of tidal volume throughout the lung. Proc. Nat. Acad. Sci. U.S. 49: 312–319 (1963)CrossRefGoogle Scholar
  12. [12]
    Gomez, D.M., W.A. Briscoe, G. Gordon: Continuous distribution of specific tidal volume throughout the lung. J. Appl. Physiol. 19: 683–692 (1964)PubMedGoogle Scholar
  13. [13]
    Heise, M., H. Koppe, K. Schmidt: Mathematical treatment of inert gas clearence curve as a method for studying regional inhomogeneity of alveolar ventilation in the lung. Respiration 31: 310–317 (1974)PubMedCrossRefGoogle Scholar
  14. [14]
    Hlastala, M.P., B. Wranne, C.J. Lenfant: Cyclical variations in FRC and other respiratory variables in resting man. J. Appl. Physiol. 34: 670–676 (1973)PubMedGoogle Scholar
  15. [15]
    Lenfant, C.: Time-dependent variations of pulmonary gas exchange in normal man at rest. J. Appl. Physiol. 22: 675–684 (1967)PubMedGoogle Scholar
  16. [16]
    Lewis, S.M., J.W. Evans, A.A. Jalowayski: Continuous distributions of specific ventilation recovered from inert gas washout. J. Appl. Physiol. 44: 416–423 (1978)PubMedGoogle Scholar
  17. [17]
    Lewis, S.M.: Emptying patterns of the lung studied by multiple-breath N 2 washout. J. Appl. Physiol. 44: 424–430 (1978)PubMedGoogle Scholar
  18. [18]
    Liew, H.D. van: Semilogarithmic plots of data which reflect a continuum of exponential processes. Science 138: 682–683 (1962)PubMedCrossRefGoogle Scholar
  19. [19]
    Milic-Emili, J., J.A.M. Henderson, M.B. Dolovich, D. Trop, K. Kaneko: Regional distribution of inspired gas in the lung. J. Appl. Physiol. 21: 749–759 (1966)PubMedGoogle Scholar
  20. [20]
    Nakamura, T., T. Takishima, T. Okubo, T. Sasaki, H. Takahashi: Distribution function of the clearence time constant in the lung. J. Appl. Physiol. 21: 227–232 (1966)PubMedGoogle Scholar
  21. [21]
    Nakamura, T., T. Takishima, Y. Sagi, T. Sasaki, T. Okubo: A new method of analyzing the distribution of mechanical time constants in the lung. J. Appl. Physiol. 21: 265–270 (1966)PubMedGoogle Scholar
  22. [22]
    Nunn, J.F., E.J.M. Campbell, B.W. Peckett: Anatomical subdivisions of the volume of respiratory dead space and effect of position of the jaw. J. Appl. Physiol. 14: 174–176 (1959)PubMedGoogle Scholar
  23. [23]
    Okubo, T., C. Lenfant: Distribution function of lung volume and ventilation determined by lung N 2 washout. J. Appl. Physiol. 24: 658–667 (1968)PubMedGoogle Scholar
  24. [24]
    Paiva, M., L.A. Engel: Theoretical studies of gas mixing and ventilation distribution in the lung. Physiol. Rev. 67: 750–796 (1987)PubMedGoogle Scholar
  25. [25]
    Peslin, R., S. Dawson, J. Mead: Analysis of multicomponent exponential curves by the Post-Widder’s equation. J. Appl. Physiol. 30: 462–472 (1971)PubMedGoogle Scholar
  26. [26]
    Shepard, R.H., E.J.M. Campbell, H.B. Martin, T. Enns: Factors affecting the pulmonary dead space as determined by single breath analysis. J. Appl. Physiol. 11: 241–244 (1957)PubMedGoogle Scholar
  27. [27]
    Wagner, P.D.: Information content of the multibreath nitrogen washout. J. Appl. Physiol. 46: 579–587 (1979)PubMedGoogle Scholar
  28. [28]
    Wessel, H.U., R.L. Stout, C.K. Bastanier, M.H. Paul: Breath-by-breath variation of FRC: effect on Vo 2 and Vco 2 measured at the mouth. J. Appl. Physiol. 46: 1122–1126 (1979)PubMedGoogle Scholar
  29. [29]
    West, J.B., C.T. Dollery: Ventilation-perfusion ratio in the lung, measured with radioactive CO 2 . J. Appl. Physiol. 15: 405–410 (1960)PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. Meyer
    • 1
  • K. Groebe
    • 1
  • G. Thews
    • 1
  1. 1.Physiologisches InstitutUniversität MainzMainzWest Germany

Personalised recommendations