Advertisement

Hypoxia Tolerance of Coronary Endothelial Cells

  • T. Noll
  • P. Wissemann
  • S. Mertens
  • A. Krützfeldt
  • R. Spahr
  • H. M. Piper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

The coronary endothelium performs a great number of specific metabolic and physiological functions, e.g. the synthesis of autacoids, and the control of the transport of material into and out of the blood stream. For these performances a sufficient supply of metabolic energy is required. Alterations of the energetic state, e.g. due to an insufficient O2 supply, can lead to serious malfunctions and injury of endothelial cells, which thus can crucially contribute to ischemic myocardial damage.

Keywords

Lactate Production Oxygen Consumption Rate Energetic State Hypoxia Tolerance Adenylate Energy Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, D. E., 1971, Adenine nucleotides as stoichiometric coupling agents in metabolism and as regulatory modifiers: the adenylate energy charge, in: “Metabolic Pathways”, volume V, H. J. Vogel, ed., p. 1, Academic Press, New York.Google Scholar
  2. Buderus, S., Siegmund, B., Spahr, A., Krützfeldt, A., and Piper, H. M., 1989, Resistance of coronary endothelial cells to anoxia-reoxygenation in isolated guinea pig hearts, Am. J. Physiol., in press.Google Scholar
  3. Chance, B., 1965, Reaction of oxygen with the respiratory chain in cells and tissue, J. Gen. Physiol. 49:163.PubMedCrossRefGoogle Scholar
  4. de Groot, H., Noll, T., and Sies, H., 1985, Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake, Arch. Biochem. Biophys. 243: 556.PubMedCrossRefGoogle Scholar
  5. Gutman, I., and Wahlefeld, A. W., 1974, L(+)-Lactate, in Methoden der enzymatischen Analyse, H. U. Bergmeyer, ed., p. 1510, Verlag Chemie, Weinheim.Google Scholar
  6. Jüngling, E., and Kammermeier, H., 1980, Rapid assay of adenine nucleotides or creatine compounds in extracts of cardiac tissue by paired-ion reverse-phase high performance liquid chromatography, Anal. Biochem. 102:3 58.Google Scholar
  7. Kloner, R. A., Rude, R. E., Carlson, N., Maroko, P. R., DeBoer, L. W. V., and Braunwald, E., 1980, Ultrastructural evidence of microvascular damage and myocardial injury after coronary artery occlusion: which comes first? Circulation 62: 945.PubMedCrossRefGoogle Scholar
  8. Krützfeldt, A., Spahr, R., Mertens, S., Siegmund, B., and Piper, H. M., 1989, Metabolism of exogenous substrates by coronary microvascular endothelial cells in culture, Am. J. Physiol., in press.Google Scholar
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. L., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265.PubMedGoogle Scholar
  10. Noll, T., de Groot, H., and Wissemann, P., 1986, A computer-supported oxystat system maintaining steady-state oxygen partial pressures and simultaneously monitoring oxygen uptake in biological systems, Biochem. J. 236: 765.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • T. Noll
    • 1
  • P. Wissemann
    • 1
  • S. Mertens
    • 2
  • A. Krützfeldt
    • 2
  • R. Spahr
    • 2
  • H. M. Piper
    • 2
  1. 1.Institut für Physiologische Chemie IHeinrich-Heine-Universität DüsseldorfGermany
  2. 2.Institut für Physiologie IHeinrich-Heine-Universität DüsseldorfGermany

Personalised recommendations