Skip to main content

Epicardial Oxygen Tensions During Changes in Arterial PO2 in Pigs

  • Chapter
Oxygen Transport to Tissue XII

Abstract

Myocardial energy production depends mainly on aerobic metabolism and oxygen extraction in the coronary vascular bed is near maximal already during normoxemia. Thus the myocardium may be more susceptible to hypoxemia than other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, R., Tamura, M., and Yamazaki, I., 1983, The effect of intracellular oxygen concentration on lactate release, pyridine nucleotide reduction, and respiration rate in the rat cardiac tissue. Circ. Res. 53:448–455

    Article  PubMed  CAS  Google Scholar 

  • Buckberg, G.D., Luck, J.C., Payne, D.B., Hoffmann, J.I.E., Archie, J.P., and Fixier, D.E., 1971, Some sources of error in measuring regional blood flow with radioactive microspheres. J. Appl. Physiol. 31:598–604

    PubMed  CAS  Google Scholar 

  • Clark, L.C. 1956, Monitor and control of blood oxygen tension. Am. Soc. Artif. Intern. Organs 2:41

    Google Scholar 

  • Coburn, R.F., Ploegmakers, F., Gondrie, P., and Abboud R., 1973, Myocardial myoglobin oxygen tension. Am. J. Physiol. 224:870–876

    PubMed  CAS  Google Scholar 

  • Coetzee, A., Foex, P., Holland, D., Ryder, A., and Jones L., 1984, Effect of hypoxia on the normal and ischemic myocardium. Crit. Care Med. 12:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Connett, R. J., Gayeski, T.E.J., and Honig, C.R., 1986, Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J. Appl. Physiol. 61:402–408

    PubMed  CAS  Google Scholar 

  • Conzen, P.F., Hobbhahn, J., Goetz, A.E., Habazettl, H., Granetzny, T., Peter, K., and Brendel, W., 1988, Splanchnic oxygen consumption and hepatic surface oxygen tensions during isoflurane anesthesia. Anesthesiology 69:643–651

    Article  PubMed  CAS  Google Scholar 

  • Conzen, P.F., Hobbhahn, J., Goetz, A.E., Gonschior, P., Seidl, G., Peter, K., and Brendel, W., 1989, Regional blood flow and tissue oxygen pressures of the collateral dependent myocardium during isoflurane anesthesia in dogs. Anesthesiology 70:442–452

    Article  PubMed  CAS  Google Scholar 

  • Edlund, A., Fredholm, B.B., Patrignani, P., Patrono, C., Wennmalm, A., and Wennmalm, M., 1983, Release of two vasodilators, adenosine and prostacyclin, from isolated rabbit hearts during controlled hypoxia. J. Physiol. 340:487–501

    PubMed  CAS  Google Scholar 

  • Habazettl, H., Conzen, P.F., Hobbhahn, J., Granetzny, T., Goetz, A.E., Peter, K., and Brendel, W., 1989, Left ventricular oxygen tensions in dogs during coronary vasodilation by enflurane, isoflurane and dipyridamole. Anesth. Analg. 68:286–294

    Article  PubMed  CAS  Google Scholar 

  • Heymann, M.A., Payne, B.D., Hoffmann, J.I.E., and Rudolph, A.M., 1977, Blood flow measurement with radionuclide-labeled particles. Prog. Cardiovasc. Pis. 20:55–79

    Article  CAS  Google Scholar 

  • Hobbhahn, J., Conzen, P.F.M., Goetz, A., Seidl, G., Gonschior, P., Brendel, W., Peter, K., 1989, Myocardial surface PO2 -an indicator of myocardial oxygenation? Cardiovascular Research 23:529–540

    Article  PubMed  CAS  Google Scholar 

  • Honig, C.R., and Gayeski T.E.J., 1987, Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red muscle. Adv. Exp. Med. Biol. 215:309–321

    Article  PubMed  CAS  Google Scholar 

  • Katz, A., Edlund, A., and Sahlin, K., 1987, NADH content and lactate production in the perfused rabbit heart. Acta Physiol. Scand. 130:193–200

    Article  PubMed  CAS  Google Scholar 

  • Kessler, M., Hoeper, J., and Krumme, B.A., 1976, Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184–197

    Article  PubMed  CAS  Google Scholar 

  • Kessler, M., Klövekorn, W.P., and Höper, J., 1984, Local oxygen supply and regional wall motion of the dog’s heart during critical stenosis of the LAD. Adv. Exp. Med. Biol. 169:331–340

    Article  PubMed  CAS  Google Scholar 

  • Kirk, E.S., and Honig, C.R., 1964, Non-uniform distribution of blood flow and gradients of oxygen tension within the heart. Am. J. Physiol. 207:661–668

    PubMed  CAS  Google Scholar 

  • Lubbers, D.W., 1977, Die Bedeutung des lokalen Gewebesauerstoffdruckes und des pO2-Histogrammes für die Beurteilung der Sauerstoffversorgung eines Organs. Prakt. Anästh. 12:185–193

    Google Scholar 

  • Lund, N., Jorfeldt, L., and Lewis, D.H., 1980, Skeletal muscle oxygen pressure fields in healthy human volunteers. Acta Anaesth. Scand. 24:272–278

    Article  PubMed  CAS  Google Scholar 

  • Nylander, E., Lund, N., and Wranne, B., 1983, Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields. J. Appl. Physiol. 54:99–104

    PubMed  CAS  Google Scholar 

  • Phibbs, R.H. and Dong, L., 1970, Nonuniform distribution of microspheres in blood flowing through a medium-size artery. Can. J. Physiol. Pharmacol. 48:415–421

    Article  PubMed  CAS  Google Scholar 

  • Seyde, W.C., and Longnecker, D.E., 1986, Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine, or deep isoflu-rane anesthesia. Anesthesiology 64:480–485

    Article  PubMed  CAS  Google Scholar 

  • Winbury, M.M., Howe, B.B., and Weiss, H.R., 1971, Effect of nitroglycerine and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow. J. Pharmacol. Exp. Ther. 176:184–199

    PubMed  CAS  Google Scholar 

  • Yokoyama, M., Maekawa, K., and Katada, Y., 1978, Effects of graded coronary constriction on regional oxygen and carbon dioxide tensions in outer and inner layers of the canine myocardium. Japan. Circ. J. 42:701–709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Habazettl, H. et al. (1990). Epicardial Oxygen Tensions During Changes in Arterial PO2 in Pigs. In: Piiper, J., Goldstick, T.K., Meyer, M. (eds) Oxygen Transport to Tissue XII. Advances in Experimental Medicine and Biology, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8181-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8181-5_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8183-9

  • Online ISBN: 978-1-4684-8181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics