Advertisement

Epicardial Oxygen Tensions During Changes in Arterial PO2 in Pigs

  • Helmut Habazettl
  • Peter F. Conzen
  • Hans Baier
  • Michael Christ
  • Brigitte Vollmar
  • Alwin Goetz
  • Klaus Peter
  • Walter Brendel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

Myocardial energy production depends mainly on aerobic metabolism and oxygen extraction in the coronary vascular bed is near maximal already during normoxemia. Thus the myocardium may be more susceptible to hypoxemia than other organs.

Keywords

Oxygen Tension Myocardial Blood Flow Lactate Release Lactate Extraction Arterial Hypoxemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, R., Tamura, M., and Yamazaki, I., 1983, The effect of intracellular oxygen concentration on lactate release, pyridine nucleotide reduction, and respiration rate in the rat cardiac tissue. Circ. Res. 53:448–455PubMedCrossRefGoogle Scholar
  2. Buckberg, G.D., Luck, J.C., Payne, D.B., Hoffmann, J.I.E., Archie, J.P., and Fixier, D.E., 1971, Some sources of error in measuring regional blood flow with radioactive microspheres. J. Appl. Physiol. 31:598–604PubMedGoogle Scholar
  3. Clark, L.C. 1956, Monitor and control of blood oxygen tension. Am. Soc. Artif. Intern. Organs 2:41Google Scholar
  4. Coburn, R.F., Ploegmakers, F., Gondrie, P., and Abboud R., 1973, Myocardial myoglobin oxygen tension. Am. J. Physiol. 224:870–876PubMedGoogle Scholar
  5. Coetzee, A., Foex, P., Holland, D., Ryder, A., and Jones L., 1984, Effect of hypoxia on the normal and ischemic myocardium. Crit. Care Med. 12:1027–1031PubMedCrossRefGoogle Scholar
  6. Connett, R. J., Gayeski, T.E.J., and Honig, C.R., 1986, Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J. Appl. Physiol. 61:402–408PubMedGoogle Scholar
  7. Conzen, P.F., Hobbhahn, J., Goetz, A.E., Habazettl, H., Granetzny, T., Peter, K., and Brendel, W., 1988, Splanchnic oxygen consumption and hepatic surface oxygen tensions during isoflurane anesthesia. Anesthesiology 69:643–651PubMedCrossRefGoogle Scholar
  8. Conzen, P.F., Hobbhahn, J., Goetz, A.E., Gonschior, P., Seidl, G., Peter, K., and Brendel, W., 1989, Regional blood flow and tissue oxygen pressures of the collateral dependent myocardium during isoflurane anesthesia in dogs. Anesthesiology 70:442–452PubMedCrossRefGoogle Scholar
  9. Edlund, A., Fredholm, B.B., Patrignani, P., Patrono, C., Wennmalm, A., and Wennmalm, M., 1983, Release of two vasodilators, adenosine and prostacyclin, from isolated rabbit hearts during controlled hypoxia. J. Physiol. 340:487–501PubMedGoogle Scholar
  10. Habazettl, H., Conzen, P.F., Hobbhahn, J., Granetzny, T., Goetz, A.E., Peter, K., and Brendel, W., 1989, Left ventricular oxygen tensions in dogs during coronary vasodilation by enflurane, isoflurane and dipyridamole. Anesth. Analg. 68:286–294PubMedCrossRefGoogle Scholar
  11. Heymann, M.A., Payne, B.D., Hoffmann, J.I.E., and Rudolph, A.M., 1977, Blood flow measurement with radionuclide-labeled particles. Prog. Cardiovasc. Pis. 20:55–79CrossRefGoogle Scholar
  12. Hobbhahn, J., Conzen, P.F.M., Goetz, A., Seidl, G., Gonschior, P., Brendel, W., Peter, K., 1989, Myocardial surface PO2 -an indicator of myocardial oxygenation? Cardiovascular Research 23:529–540PubMedCrossRefGoogle Scholar
  13. Honig, C.R., and Gayeski T.E.J., 1987, Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red muscle. Adv. Exp. Med. Biol. 215:309–321PubMedCrossRefGoogle Scholar
  14. Katz, A., Edlund, A., and Sahlin, K., 1987, NADH content and lactate production in the perfused rabbit heart. Acta Physiol. Scand. 130:193–200PubMedCrossRefGoogle Scholar
  15. Kessler, M., Hoeper, J., and Krumme, B.A., 1976, Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184–197PubMedCrossRefGoogle Scholar
  16. Kessler, M., Klövekorn, W.P., and Höper, J., 1984, Local oxygen supply and regional wall motion of the dog’s heart during critical stenosis of the LAD. Adv. Exp. Med. Biol. 169:331–340PubMedCrossRefGoogle Scholar
  17. Kirk, E.S., and Honig, C.R., 1964, Non-uniform distribution of blood flow and gradients of oxygen tension within the heart. Am. J. Physiol. 207:661–668PubMedGoogle Scholar
  18. Lubbers, D.W., 1977, Die Bedeutung des lokalen Gewebesauerstoffdruckes und des pO2-Histogrammes für die Beurteilung der Sauerstoffversorgung eines Organs. Prakt. Anästh. 12:185–193Google Scholar
  19. Lund, N., Jorfeldt, L., and Lewis, D.H., 1980, Skeletal muscle oxygen pressure fields in healthy human volunteers. Acta Anaesth. Scand. 24:272–278PubMedCrossRefGoogle Scholar
  20. Nylander, E., Lund, N., and Wranne, B., 1983, Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields. J. Appl. Physiol. 54:99–104PubMedGoogle Scholar
  21. Phibbs, R.H. and Dong, L., 1970, Nonuniform distribution of microspheres in blood flowing through a medium-size artery. Can. J. Physiol. Pharmacol. 48:415–421PubMedCrossRefGoogle Scholar
  22. Seyde, W.C., and Longnecker, D.E., 1986, Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine, or deep isoflu-rane anesthesia. Anesthesiology 64:480–485PubMedCrossRefGoogle Scholar
  23. Winbury, M.M., Howe, B.B., and Weiss, H.R., 1971, Effect of nitroglycerine and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow. J. Pharmacol. Exp. Ther. 176:184–199PubMedGoogle Scholar
  24. Yokoyama, M., Maekawa, K., and Katada, Y., 1978, Effects of graded coronary constriction on regional oxygen and carbon dioxide tensions in outer and inner layers of the canine myocardium. Japan. Circ. J. 42:701–709CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Helmut Habazettl
    • 1
  • Peter F. Conzen
    • 2
  • Hans Baier
    • 1
  • Michael Christ
    • 1
  • Brigitte Vollmar
    • 1
  • Alwin Goetz
    • 1
  • Klaus Peter
    • 2
  • Walter Brendel
    • 1
  1. 1.Institute of Surgical ResearchUniversity of MunichMunich 70Germany
  2. 2.Institute of AnesthesiologyUniversity of MunichMunich 70Germany

Personalised recommendations