Advertisement

Left Ventricular Surface Tissue Oxygen Pressures Determined by Oxygen Sensitive Multiwire Electrodes in Pigs

  • Peter F. Conzen
  • Helmut Habazettl
  • Michael Christ
  • Hans Baier
  • Jonny Hobbhahn
  • Brigitte Vollmar
  • A. Goetz
  • Klaus Peter
  • Walter Brendel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

Oxygen sensitive needle electrodes have been used during the past years to describe intramyocardial oxygen tensions (Kirk and Honig, 1964; Koyama et al., 1979; Mendier et al., 1973; Moss, 1968; O’Riordan, 1977; Schubert et al., 1978; Winbury et al., 1971). However, a limitation of the intramyocardially inserted electrodes is that measurements at identical locations of tissue over longer periods of time are limited. This is mainly caused by the relatively large diameters of the electrodes, interfering with oxygen transport to the tissue under investigation (Moss, 1968). The average intramyocardial oxygen pressures obtained by these devices are usually below coronary venous PO2: Such a gradient is assumed to be necessary to enable diffusion of a sufficient amount of oxygen molecules from red cells into tissue.

Keywords

Left Anterior Descend Oxygen Pressure Myocardial Blood Flow Regional Blood Flow Left Anterior Descend Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Clark, L.C., 1956, Monitor and control of blood oxygen tension, Am. Soc. Artif. Intern. Organs, 2: 41–48.Google Scholar
  2. Coburn, R.F., F. Ploegmakers, P. Gondrie, R. Abboud, 1973, Myocardial myoglobin oxygen tension, Am. J. Physiol, 224: 870–876.PubMedGoogle Scholar
  3. Connett, R.J., T.E.J. Gayeski, CR. Honig, 1985, An upper bound on the minimum pO2 for O2 consumption in red muscle, Adv. Exp. Med. Biol., 191: 291–300.PubMedCrossRefGoogle Scholar
  4. Conzen P.F., J. Hobbhahn, A.E. Goetz, P. Gonschior, G. Seidl, K. Peter, W. Brendel, 1989, Regional blood flow and tissue oxygen pressures of the collateral-dependent myocardium during isoflurane anesthesia in dogs, Anesthesiology, 70: 442–452.PubMedCrossRefGoogle Scholar
  5. Conzen, P., J. Hobbhahn, A. Goetz, G. Seidl, P. Gonschior, K. Peter, W. Brendel, 1987, Myocardial surface PO2 correlates with transmural lactate metabolism in a porcine model of acute coronary stenosis, in: “Microcirculation — an update,” Tsuchiya, M., M. Asano, Y. Mishima, M. Oda, eds., Excerpta medica, Amsterdam.Google Scholar
  6. Forst, H., J. Racenberg, R. Schosser, K. Messmer: Right ventricular tissue pO2 in dogs, 1987, Effects of hemodilution and acute right coronary artery occlusion, Res. Exp. Med., 187: 159–174.CrossRefGoogle Scholar
  7. Gallagher, K.P., G. Osakada, O.M. Hess, J.A. Koziol, W.S. Kernper, J. Ross jr, 1982, Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation, Circ. Res, 50: 352–359.PubMedCrossRefGoogle Scholar
  8. Gallagher, K.P., M.C. Stirling, M. Choy, C.A. Szpunar, R.A. Gerren, M.J. Botham, J.H. Lemmer, 1985, Dissociation between epicardial and transmural function during acute myocardial ischemia, Circulation, 71: 1279–1291.PubMedCrossRefGoogle Scholar
  9. Gayeski, T.E.J., R.J. Connett, CR. Honig, 1987, Minimum intracellular pO2 for maximum cytochrome turnover in red muscle in situ, Am. J. Physiol., 252: 906–915.Google Scholar
  10. Gayeski, T.E.J., C.R. Honig, 1986, O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2, Am. J. Phvsiol., 251: 789–799.Google Scholar
  11. Gajeski, T.E.J. and C.R. Honig, 1987, Shallow intracellular O2 gradients and absence of perimitochondrial O2 “wells” in heavily working red muscle, Adv. Exp. Med. Biol., 200: 487–494.CrossRefGoogle Scholar
  12. Habazettl, H., P.F. Conzen, J. Hobbhahn, T. Granetzny, A.E. Goetz, K. Peter, W. Brendel, 1989, Left ventricular oxygen tensions in dogs during coronary vasodilation by enflurane, isoflurane and dipyridamole, Anesth. Analer., 68: 286–294.Google Scholar
  13. Heymann, M.A., B.D. Payne, J.I.E. Hoffman, A.M. Rudolph, 1977, Blood flow measurements with radionuclide-labeled particles, Prog. Cardiovasc. Pis., 20: 55–79.CrossRefGoogle Scholar
  14. Hobbhahn, J., P.F. Conzen, E. Hansen, A.E. Goetz, G. Seidl, P. Gonschior, W. Brendel, K. Peter, 1989, Myocardial surface oxygen tension is an indicator of transmural tissue oxygenation of the in vivo beating pig heart, Cardiovasc. Res., 23: 529–540.PubMedCrossRefGoogle Scholar
  15. Honig, CR. and T.E.J. Gayeski, 1987, Capillary function and the role of myoglobin in myocardium. Abstracts of the Fourth World Congress for Microcirculation, Tokyo.Google Scholar
  16. Kessler, M., J. Höper, B.A. Krumme, 1976, Monitoring of tissue perfusion and cellular function, Anesthesiology, 45: 184–197.PubMedCrossRefGoogle Scholar
  17. Kirk, E.S. and CR. Honig, 1964, Nonuniform distribution of blood flow and gradients of oxygen tension within the heart, Am. J. Phvsiol., 207: 661–668.Google Scholar
  18. Koyama, T., M. Horimoto, Y. Kikuchi, Y. Kakiuchi, T. Arai, 1979, Non-uniform oxygen supply to the left ventricular myocardium by systolic perfusion of coronary artery, Jap. J. Phvsiol., 29: 267–274.CrossRefGoogle Scholar
  19. Krogh, A., 1919, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Phvsiol. (Lond), 52: 409–415.Google Scholar
  20. Lekven, J., O.D. Mjos, J.K. Kjekshus, 1973, Compensatory mechanisms during graded myocardial ischemia, Am. J. Cardiol., 31: 467–473.PubMedCrossRefGoogle Scholar
  21. Lübbers, D.W., 1977, Quantitative measurement and description of oxygen supply to the tissue, in: “Oxygen and Physiological Functions”, F.F. Jöbsis, ed., Professional Information Library, Dallas.Google Scholar
  22. Lübbers, D.W., 1982, Oxygen supply to the myocardium, in: “Microcirculation of the Heart”, H. Tillmanns, W. Kübier, H. Zebe, eds., Berlin, Springer-Verlag, 1982, p 119CrossRefGoogle Scholar
  23. Mendier, N., S. Schuchhardt, F. Sebening, 1973, Measurement of intramyocardial oxygen tension during cardiac surgery in man, Res. Exp. Med., 159: 231–238.CrossRefGoogle Scholar
  24. Moss, A.J., 1968, Intramyocardial oxygen tension, Cardiovasc. Res., 3: 314–318.CrossRefGoogle Scholar
  25. O’Riordan, J.B., J.T. Flaherty, S.F. Khuri, R.K. Brawley, B. Pitt, V.L. Gott, 1977, Effects of atrial pacing on regional myocardial gas tensions with critical coronary stenosis, Am. J. Physiol., 232: 49–53.Google Scholar
  26. Rose, C.P. and C.A. Goresky, 1985, Limitations of tracer oxygen uptake in the canine coronary circulation, Circ. Res., 56: 57–71.PubMedCrossRefGoogle Scholar
  27. Schubert, R.W., W.J. Whalen, P. Nair, 1978, Myocardial P02 distribution: relationship to coronary autoregulation, Am. J. Phvsiol., 234: 361–370.Google Scholar
  28. Stowe, D.F., D.G. Mathey, W.Y. Moores, S.A. Glantz, R.M. Towns-end, P. Kabra, K. Chatterjee, W.W. Parmley, J.V. Tyberg, 1978, Segment stroke work and metabolism depend on coronary blood flow in the pig, Am. J. Physiol., 234: 597–607.Google Scholar
  29. Streeter, D.D., H.M. Spotnitz, D.P. Patel, J. Ross, E.H. Sonnenblick, 1969, Fiber orientation in the canine left ventricle during diastole and systole, Circ. Res., 24: 339–347.PubMedCrossRefGoogle Scholar
  30. Turek, Z., L. Hoofd, K. Radusan: Myocardial capillaries and tissue oxygenation, 1986, Can. J. Cardiol., 2: 98–103.PubMedGoogle Scholar
  31. Walfridsson, H., D.H. Lewis, F. Sjöberg, N. Lund, 1985, Acute coronary occlusion: Oxygen pressure in the border zone studied in the pig, Int. J. Microcirc.: Clin. Exp., 4: 109–119.Google Scholar
  32. Winbury, M.M., B.B. Howe, H.R. Weiss, 1971, Effect of nitroglycerin and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow, J. Pharmacol. Exp. Ther., 176: 184–199.PubMedGoogle Scholar
  33. Wittenberg, B.A. and T.F. Robinson, 1981, Oxygen requirements, morphology, cell coat and membrane permeability of calcium tolerant myocytes from hearts of adult rats, Cell Tissue Res., 216: 231–251.PubMedCrossRefGoogle Scholar
  34. Yokoyama M., K. Maekawa, Y. Katada, Y. I shikawa, T. Azumi, T. Mizutani, H. Fukuzaki, T. Tomomatsu, 1978, Effects of graded coronary constriction on regional oxygen and carbon dioxide tensions in outer and inner layers of the canine myocardium, Jap. Circ. J., 42: 701–709.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Peter F. Conzen
    • 2
  • Helmut Habazettl
    • 1
  • Michael Christ
    • 1
  • Hans Baier
    • 1
  • Jonny Hobbhahn
    • 2
  • Brigitte Vollmar
    • 1
  • A. Goetz
    • 1
  • Klaus Peter
    • 2
  • Walter Brendel
    • 1
  1. 1.Institute of Surgical ResearchMunich 70Germany
  2. 2.Institute of AnesthesiologyMunich 70Germany

Personalised recommendations