Skip to main content

Response Time of Mitochondrial Oxygen Consumption Following Stepwise Changes in Cardiac Energy Demand

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 277))

Abstract

When the metabolic demand of the heart changes, the mitochondria alter their ATP-production which is linked to mitochondrial oxygen consumption. The control mechanisms of mitochondrial respiratory rate are under debate (Chance et al., 1986; Katz et al., 1989; Erecinska and Wilson, 1982). Knowledge of the time course of mitochondrial oxygen consumption following changes in ATP-hydrolysis could give important information on mitochondrial metabolic control mechanisms and adaptation to cellular energy demand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achs, M.J., Garfinkel, D., and Opie, L.H., 1982, Computer simulation of metabolism of glucose-perfused rat heart in a work-jump, Am. J. Physiol. 243: R389–R399.

    PubMed  CAS  Google Scholar 

  • Achs, M.J., Kohn, M.C., and Garfinkel, D., 1979, Computer simulation of metabolism in pyruvate-perfused rat heart. IV. Model behavior, Am. J. Physiol. 237: R174–R180.

    PubMed  CAS  Google Scholar 

  • Araki, R., Tamura, M., and Yamazaki, I., 1983, The effect of intracellular oxygen concentration on lactate release, pyridine nucleotide reduction, and respiration rate in the rat cardiac tissue, Circ. Res. 53: 448–455.

    Article  PubMed  CAS  Google Scholar 

  • van Beek, J.H.G.M., and Elzinga, G., 1987, Diffusional shunting of oxygen in saline-perfused rabbit heart is negligible, Pflügers Arch. 410: 263–271.

    Article  PubMed  Google Scholar 

  • van Beek, J.H.G.M., Bouma, P., and Westerhof, N., 1989, Oxygen uptake in saline-perfused rabbit heart is decreased to a similar extent during reductions in flow and in oxygen concentration, Pflüqers Arch. 414: 82–88.

    Article  Google Scholar 

  • van Beek, J.H.G.M., Bassingthwaighte, J.B., and Roger, S.A., in press, Fractal networks explain regional myocardial flow heterogeneity, in: “Oxygen transport to tissue XI,” K. Rakusan, G. Biro, T.K. Goldstick, and Z. Turek, eds., Plenum, New York.

    Google Scholar 

  • Bassingthwaighte, J.B., Kuikka, J.T., Chan, I.S., Arts, T., and Reneman, R.S., 1985, A comparison of ascorbate and glucose transport in the heart, Am. J. Physiol. 249: H141–H149.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J.B., King, R.B., and Roger, S.A., in press, Fractal nature of regional myocardial blood flow heterogeneity, Circ. Res.

    Google Scholar 

  • Chance, B., Leigh, J.S. Jr., Kent, J., McCully, K., Nioka, S., Clark, B.J., Maris, J.M., and Graham, T., 1986, Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance, Proc. Natl. Acad. Sci. USA 83: 9458–9462.

    Article  PubMed  CAS  Google Scholar 

  • van Echteld, C.J.A., van Beek, J.H.G.M., Kirkels. J. H., van der Meer, P., Ruigrok, T.J.C., and Westerhof, N., 1988, 31P-NMR study of the response of myocardial energy metabolism to heart rate steps, III International Congress on Muscle Energetics, Yufuin, Japan.

    Google Scholar 

  • Erecinska, M., and Wilson, D.F., 1982, Regulation of cellular energy metabolism, J. Membrane Biol. 70: 1–14.

    Article  CAS  Google Scholar 

  • Honig, C.R., and Gayeski, T.E.J., in press, Precapillary O2 loss and arteriovenous O2 diffusion shunt are below limit of detection in myocardium, in: “Oxygen transport to tissue XI,” K. Rakusan, G. Biro, T.K. Goldstick, and Z. Turek, eds., Plenum, New York.

    Google Scholar 

  • Katz, L.A., Swain, J.A., Portman, M.A., and Balaban, R.S., 1989, Relation between phosphate metabolites and oxygen consumption of heart in vivo, Am. J. Physiol. 256: H265–H274.

    PubMed  CAS  Google Scholar 

  • Krogh, A., 1919, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol. 52: 409–415.

    PubMed  CAS  Google Scholar 

  • Meyer, R.A., 1988, A linear model of muscle respiration explains monoexponent ial phosphocreat ine changes, Am. J. Physiol. 254. C548–C554.

    PubMed  CAS  Google Scholar 

  • Zierler, K.L., 1961, Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady states, J. Clin. Invest. 40: 2111–2125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

van Beek, J.H.G.M., Westerhof, N. (1990). Response Time of Mitochondrial Oxygen Consumption Following Stepwise Changes in Cardiac Energy Demand. In: Piiper, J., Goldstick, T.K., Meyer, M. (eds) Oxygen Transport to Tissue XII. Advances in Experimental Medicine and Biology, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8181-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8181-5_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8183-9

  • Online ISBN: 978-1-4684-8181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics