Advertisement

Effect of Tachycardia on Intracellular PO2 and Reserves of O2 Transport in Subendocardium of Mouse Left Ventricle

  • C. R. Honig
  • T. E. J. Gayeski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

The purpose of this study is to evaluate reserves of O2 transport in myocardium using tachycardia as a stimulus. The O2 saturations of hemoglobin (Hb) in microvessels and myoglobin (Mb) in individual myocytes are the measured responses. The latter is of particular interest in that it represents the net balance of all determinants of O2 supply and demand.

Keywords

Maximum Heart Rate Diffusive Transport Preparative Procedure Subendocardial Ischemia Transmural Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J.R., and Driedzic, W.R., 1988, Perfusion-independent oxygen extraction in myoglobin-rich hearts, J. Exp. Biol., 135:301.PubMedGoogle Scholar
  2. Balaban, R.S., Kantor, H.L., Katz, L.A., and Briggs, R.W., 1986, Relation between work and phosphate metabolites in the in vivo paced mammalian heart, Science. 232:1121.PubMedCrossRefGoogle Scholar
  3. Buckberg, D.D., Fixier, F.E., Archie, J.P., and Hoffman, J.E., 1972, Experimental subendocardial ischemia in dogs with normal coronary arteries, Circ. Res. 30:67.PubMedCrossRefGoogle Scholar
  4. Chuong, C.J., and Fung, Y.C., 1986, Residual stress in arteries, in: “Frontiers in Biomechanics.” G.W. Schmid-Schoenbein, S.L.-Y. Woo, and B.W. Zweifach, eds., Springer, New York.Google Scholar
  5. Clark, A., Clark, P. A. A., Connett, R. J., Gayeski, T. E. J., and Honig, C. R., How large is the drop in PO2 between cytosol and mitochondrial? Am. J. Physiol., 252:C583, 1987.PubMedGoogle Scholar
  6. Coburn, R. F., Ploegmakers, F., and Gondrii, P., and R. Abboud., 1973, Myocardial myoglobin O2 tension, Am. J. Physiol., 224:870.PubMedGoogle Scholar
  7. Degner, F., and Gayeski, T. E. J., 1987, A comparison of a four wavelength analysis and multicomponent wavelength analysis applied to determination of hemoglobin saturation, Adv. Exper. Med. Biol., 215:153.CrossRefGoogle Scholar
  8. Federspiel, W. J., and Popel, A. S., 1986, A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries, Microvasc. Res., 32:164.PubMedCrossRefGoogle Scholar
  9. Gayeski, T. E. J., 1981, A Cryogenic Microspectrophotometric Method for Measuring Myoglobin Saturation in Subcellular Volumes; Application to Resting Dog Muscle, (Ph.D. Thesis), Rochester, NY: University of Rochester, Univ. Microfilms, No. DA9224720, Ann Arbor, MI.Google Scholar
  10. Gayeski, T. E. J., and Honig, C.R., 1986, 02 gradients from sarcolemma to cell interior in a red muscle at maximal VO2, Am. J. Physiol., 251:789.Google Scholar
  11. Gayeski, T. E. J., and Honig, C. R., 1989, Intracellular PO2 in individual cardiac myocytes in dog, cat, rabbit, ferret and rat, Am. J. Physiol., in press.Google Scholar
  12. Gayeski, T.E.J., Connett, R.J., and Honig, C.R., 1987, The minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Am. J. Physiol., 252:H906.PubMedGoogle Scholar
  13. Gray, L.H., and Steadman, J.M. 1964, Determination of the oxyhaemoglobin dissociation curves for mouse and rat blood, 175:161.Google Scholar
  14. Groebe, K., and Thews, G., 1986, Theoretical analysis of oxygen supply to contracted skeletal muscle, Adv. Exper. Med. Biol., 200:495.CrossRefGoogle Scholar
  15. Honig, C.R. 1988. Modern Cardiovascular Physiology. 2nd Ed, Little Brown, Boston.Google Scholar
  16. Honig, C.R., and Gayeski, T.E.J., 1989, Precapillary O2 loss and arteriovenous O2 diffusion shunt are below limit of detection in myocardium, Adv. Exper. Med. Biol., 247:591CrossRefGoogle Scholar
  17. Honig, C.R., Gayeski, T.E.J., and Frierson, J.F., 1989, Anatomic determinant of O2 flux density at cardiac capillaries, Am. J. Physiol., 256:H375.PubMedGoogle Scholar
  18. Katz, S.A., and Feigl, E.O., 1988, Systole has little effect on diastolic coronary artery blood flow, Circ. Res., 62:443PubMedCrossRefGoogle Scholar
  19. Kreuzer, F., and Hoofd, 1987, Facilitated diffusion of oxygen and carbon dioxide, in: “Handbook of Physiology, Section 3: The Respiratory System. Volume IV: Gas Exchange. L.E. Farhi, and S.M. Tenney, eds., Am. Physiol. Soc., Bethesda, Maryland.Google Scholar
  20. Omens, J.H., 1988, Left ventricular strain in the no-load state due to the existence of residual stress. (Thesis). University of California, San Diego, LaJolla.Google Scholar
  21. Vetterlein, F., and Schmidt, C, 1985, Dilatory capacity of the coronary system in the anesthetized rat, Basic Res. Cardiol., 80:661.PubMedCrossRefGoogle Scholar
  22. Waldman, L.K., Fung, Y.C., and Covell, J.W., 1985, Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ. Res., 57:152.PubMedCrossRefGoogle Scholar
  23. Weiss, H.R., Neubauer, J.A., Lipp, J.A., and Sinha, A.K., 1978, Quantitative determination of regional oxygen consumption in the dog heart, Circ. Res., 42:394.PubMedCrossRefGoogle Scholar
  24. Wittenberg, B.A., and Wittenberg, J.B., 1989, Transport of oxygen in muscle, Ann. Rev. Physiol., 51:857.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. R. Honig
    • 1
  • T. E. J. Gayeski
    • 1
  1. 1.School of Medicine and DentistryThe University of RochesterRochesterUSA

Personalised recommendations