Advertisement

Platelet Activating Factor Antagonists do not Alter Normal Cerebral Blood Flow or Cerebral Oxygen Consumption

  • Patrick M. Kochanek
  • John A. Melick
  • Rebecca J. Schoettle
  • Mary Jo Magargee
  • Rhobert W. Evans
  • Edwin M. Nemoto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)

Abstract

Platelet activating factor (PAF), (1-o-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) an endogenous lipid, is involved in the cerebrovascular response to ischemia (1–5). It potently vasoconstricts (6,7), increases microvascular permeability (8), activates granulocytes (9) and stimulates arachidonate-independent platelet aggregation (10). Infused IV, PAF causes cerebral hypoperfusion and hypermetabolism similar to that observed during reperfusion following cerebral ischemia (11,12). PAF-receptor blockade attenuates the development of postinsult hypoperfusion after cerebral embolism in rats (1) and dogs (3) and after carotid occlusion in gerbils (4,5). Its effects on cerebrometabolic rate for oxygen (CMRO2) have not been investigated. Thus, PAF plays a role in the pathophysiological response of the cerebral circulation and perhaps metabolism, but whether it plays a similar role under normal physiological circumstances is unknown.

Keywords

Platelet Activate Factor Glyceryl Ether Pial Artery Platelet Activate Factor Antagonist Cerebral Oxygen Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Le Poncin, J. Rapin, and J. R. Rapin: Effects of Ginkgo biloba on changes induced by quantitative cerebral microembolization in rats. Arch Int Pharmacodyn 243:236–244,(1980)Google Scholar
  2. 2.
    L. Karcher, P. Zagermann, and J. Krieglstein: Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn-Schmiedeberg’s Arch Pharmacol 327:31–35 (1984)CrossRefGoogle Scholar
  3. 3.
    P. M. Kochanek, A. J. Dutka, K. K. Kumaroo, and J. M. Hallenbeck: Platelet-activating factor blockade enhances early neuronal recovery after multifocal brain ischemia in dogs. Life Sci 41:2639–2644 (1987)PubMedCrossRefGoogle Scholar
  4. 4.
    T. Panetta, VL Marcheselli, P. Braquet, B. Spinnewyn, and N. G. Bazan: Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinoitides and blood flow in the gerbil brain: Inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun 149:580–587 (1987)PubMedCrossRefGoogle Scholar
  5. 5.
    B. Spinnewyn, N. Blavet, B. F. Clostre, N. Bazan, and P. Braquet: Involvement of platelet-activating factor (PAF) in cerebral postischemic phase in mongolian gerbils. Prostaglandins 34:337–350 (1987)PubMedCrossRefGoogle Scholar
  6. 6.
    G. Feuerstein, L. M. Boyd, D. Ezra, and R. E. Goldstein: Effect of platelet activating factor on coronary circulation of the domestic pig. Am J Physiol 246:H466 (1984)PubMedGoogle Scholar
  7. 7.
    W. M. Armstead, M. Pourcyrous, R. Mirro, C. W. Leffler, and D. W. Busija: Platelet activating factor: A potent constrictor of cerebral arterioles in newborn pigs. Circ Res 62:1–7 (1988)PubMedCrossRefGoogle Scholar
  8. 8.
    D. M. Humphrey, L. M. McManus, K. Satouchi, and D. J. Hanahan, and N. Pinckard: Vasoactive properties of acetyl glyceryl ether phosphorylcholine and analogues. Lab Invest 46:422–427 (1982)PubMedGoogle Scholar
  9. 9.
    J. O. Shaw, N. Pinckard, K. S. Ferrigni, L. M. McManus, and D. J. Hanahan: Activation of human neutrophils with 1–0-hexadecyl/hexadecyl/octadecyl-2-acetyl-sn-glyceryl-2-phosphorylcholine (platelet-activating factor). J Immunol 127:1250–1255 (1981)PubMedGoogle Scholar
  10. 10.
    D. H. Namm, A. S. Tadephalli, and J. A. High: Species specificity of the platelet response to 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. Thromb Res 25:341–350 (1982)PubMedCrossRefGoogle Scholar
  11. 11.
    P. M. Kochanek, E. Nemoto, J. Melick, R. Evans, and D. Burke: Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J Cereb Blood Flow Metab 8:546–551 (1988)PubMedCrossRefGoogle Scholar
  12. 12.
    K. A. Hossmann: Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metab 2:1275–297 (1982)Google Scholar
  13. 13.
    A. Tokumura, K. Kamiyasu, K. Takauchi, and H. Tsukatani: Evidence for existence of various homologues and analogues of platelet-activating factor in a lipid extract of bovine brain. Biochem Biophys Res Commun 145:415–425 (1987)PubMedCrossRefGoogle Scholar
  14. 14.
    R. Kumar, S. Harvey, M. Rester, D. Hanahan, and M. Olson: Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta 963:375–383 (1988)PubMedCrossRefGoogle Scholar
  15. 15.
    C. L. Swendsen, J. M. Ellis, F. H. Chilton, J. T. O’Flaherty, and R. L. Wykle: 1-Q-alkyl- 2-acyl-sn-glycero-2-phosphocholine: A novel source of arachidonic acid in neutrophils stimualted by the calcium ionophore A23187. Biochem Biophys Res Commun 113:72–79 (1983)PubMedCrossRefGoogle Scholar
  16. 16.
    N. Dahlgren, B. Nilsson, T. Kakabe, and B. K. Siesjo: The effect of indomethacin on cerebral blood flow and oxygen consumption in rat at normal and increased carbon dioxide tension. Acta Physiol Scand 111:475–485 (1981)PubMedCrossRefGoogle Scholar
  17. 17.
    T. W. Furlow and J. M. Hallenbeck: Indomethacin prevents impaired perfusion of dog’s brain after global ischemia. Stroke 9:591–594 (1948)CrossRefGoogle Scholar
  18. 18.
    S. Shigeno, E. Fritschka, T. Shigeno, and M. Brock: Effects of indomethacin on rCBF during and after focal cerebral ischemia in the cat. Stroke 16:235–240 (1985)PubMedCrossRefGoogle Scholar
  19. 19.
    W. Yong: H2 clearance measurement of blood flow: A review of technique and Polarographic principles. Stroke 11:552–564 (1930)CrossRefGoogle Scholar
  20. 20.
    J. Casals-Stenzel: Protective effect of WEB 2086, a novel antagonist of platelet activating factor, in endotoxin shock. Euro J Pharmacol 135:117–122 (1987)CrossRefGoogle Scholar
  21. 21.
    J. Casals-Stenzel, G. Muacevic, and K. Heinz-Weber: Pharmacological actions of WEB 2086, a new specific antagonist of platelet activating factor. J Pharmacol Exper Ther 241:974–981 (1987)Google Scholar
  22. 22.
    S. A. Glantz: Primer of Biostatistics. 2d ed, McGraw-Hill, Inc., New York, 1981, pp 156–157Google Scholar
  23. 23.
    E. Kornecki and Y. H. Ehrlick: Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794 (1988)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Adnot, J. Lefort, V. Lagente, P. Braquet, B. B. Vargaftig: Interference of BN 52 021, a PAF-acether antagonist, with endotoxin-induced hypotension in the guinea-pig. Pharmacol Res Commun 18:197–200 (1986)PubMedCrossRefGoogle Scholar
  25. 25.
    Braquet P: The ginkolides: Potent platelet-activating factor antagonists isolated from ginkgo biloba L: Chemistry, pharmacology and clinical applications. Drugs of the Future 12:643–699 (1987)Google Scholar
  26. 26.
    Pretolani M, Lefort J, Malanchere E, Vargaftig BB: Interference by the novel PAF-acether antagonist WEB 2086 with the bronchopulmonary responses to PAF-acether and to active and passive anaphylactic shock in guinea-pigs. Euro J Pharmacol 140:311–321 (1987)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Patrick M. Kochanek
    • 1
  • John A. Melick
    • 1
  • Rebecca J. Schoettle
    • 1
  • Mary Jo Magargee
    • 1
  • Rhobert W. Evans
    • 1
  • Edwin M. Nemoto
    • 1
  1. 1.School of Medicine, Department of Anesthesiology and Critical Care, Medicine and PediatricsUniversity of PittsburghPittsburghUSA

Personalised recommendations