Oxygenation of Tumors Derived from ras Transformed Cells

  • F. Kallinowski
  • R. R. Friis
  • F. Van Roy
  • P. Vaupel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 277)


Malignant transformation involves the activation of growth-promoting and/or the loss of growth suppressing genes. Activated ras genes are frequently found in malignant tumors (Barbacid, 1987). Considering tumor treatment, malignant transformation by ras genes has been reported to increase the cellular resistance to ionizing radiation and chemotherapy (Sklar, 1988 a,b). Besides these genetic factors, epigenetic influences such as the tumor oxygenation can modulate the effectiveness of non-surgical treatment modalities (Teicher et al., 1981; Sutherland, 1988). Since there are only insufficient data on possible interrelationships between ras activation and changes of the tumor micromilieu the tissue oxygenation of tumors derived from ras transformed fibroblast-like cells was investigated.


Volume Doubling Time Tissue Oxygen Level SacI Fragment Intensifier Screen Harvey Murine Sarcoma Virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), 1987, Current protocols in molecular biology. Wiley, New York.Google Scholar
  2. Barbacid, M., 1987, ras genes. Ann. Rev. Biochem., 56: 779.PubMedCrossRefGoogle Scholar
  3. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors. Science (Wash., DC), 235: 442.PubMedCrossRefGoogle Scholar
  4. Folkman, J., Watson, K., Ingber, D., and Hanahan, D., 1989, Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339: 58.PubMedCrossRefGoogle Scholar
  5. Freeman, A.E., Gilden, R.V., Vernon, M.N., Wolford, R.G., Hugunin, P.E., and Huebner, R.J., 1973, 5-Bromo-2’-deoxy-uridine potentiation of transformation of rat embryo cells induced in vitro by 3-methylcholanthrene: induction of rat leukemia virus gs antigen in transformed cells. Proc. Nat. Acad. Sci. USA, 70: 2415.PubMedCrossRefGoogle Scholar
  6. Gimbrone, M.A., and Gullino, P.M., 1976, Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res., 36: 2611.PubMedGoogle Scholar
  7. Gimbrone, M.A., Leapman, S.B., Cotran, R.S., and Folkman, J., 1972, Tumor dormancy in vivo by prevention of neovascularization. J. Exptl. Med., 136: 261.CrossRefGoogle Scholar
  8. Ishikawa, F., Miyazono, K., Hellman, U., Drexler, H., Wernstedt, C., Hagiwara, K., Usuki, K., Takaku, F., Risau, W., and Heldin, C.H., 1989, Identification of angiogenic activity and the cloning and expression of platelet derived endothelial cell growth factor. Nature, 338: 557.PubMedCrossRefGoogle Scholar
  9. Kallinowski, F., Schienger, K.H., Runkel, S., Kloes, M., Stohrer, M., Okunieff, P., and Vaupel, P., 1989, Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res., 49: in press.Google Scholar
  10. Land, H., Parada, L.F., and Weinberg, R.A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304: 596.PubMedCrossRefGoogle Scholar
  11. Peterson, H.-I., 1979, Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. Boca Raton, CRC Press.Google Scholar
  12. Sedlacek, R.S., and Mason, K.S., 1977, A simple and inexpensive method for maintaining a defined flora mouse colony. Lab. Animal Sci., 27: 667.Google Scholar
  13. Sklar, M. D., 1988a, The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science (Wash., DC), 239: 645.CrossRefGoogle Scholar
  14. Sklar, M. D., 1988b, Increased resistance to cis-diammine-dichloroplatinum(II) in NIH 3T3 cells transformed by ras oncogenes. Cancer Res., 48: 793.PubMedGoogle Scholar
  15. Steel, G. G., 1977, Growth kinetics of tumours. Clarendon Press, Oxford.Google Scholar
  16. Sutherland, R. M., 1988, Cell and environment interactions in tumor microregions: the multiceli spheroid model. Science (Wash., DC), 240: 177.CrossRefGoogle Scholar
  17. Teicher, B. A., Lazo, J. S., and Sartorelli, A. C., 1981, Classification of antineoplastic agents by their selective toxicities towards oxygenated and hypoxic tumor cells. Cancer Res., 41: 73.PubMedGoogle Scholar
  18. Van Roy, F. M., Messiaen, L., Liebaut, G.T., Gao, J., Dragonetti, C.H., Fiers, W.C., and Mareei, M., 1986, Invasiveness and metastatic capability of rat fibroblast-like cells before and after transfection with immortalizing and transforming genes. Cancer Res. 46: 4787.PubMedGoogle Scholar
  19. Vaupel, P., 1977, Hypoxia in malignant tumors. Microvasc. Res., 13: 399.PubMedCrossRefGoogle Scholar
  20. Vaupel, P., Frinak, S., and Bicher, H.I., 1981, Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res., 41: 2008.PubMedGoogle Scholar
  21. Vaupel, P., Kallinowski, F., and Okunieff, P., 1989, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49: in press.Google Scholar
  22. Vaupel, P., Okunieff, P., Kallinowski, F., and Neuringer, L. J., 1989, Correlations between 31P-NMR spectroscopy and tissue O tension measurements in a murine fibrosarcoma. Radiat. Res., in press.Google Scholar
  23. Weiss, C., and Fleckenstein, W., 1986, Local tissue pO measured with “thick” needle probes. Funktionsanalyse biolog. Systeme, 15, 155.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • F. Kallinowski
    • 1
  • R. R. Friis
    • 2
  • F. Van Roy
    • 3
  • P. Vaupel
    • 1
  1. 1.Dept.of Radiation Medicine, Harvard Medical SchoolMass. General HospitalBostonUSA
  2. 2.Institute of Clinical-Experimental Cancer ResearchTiefenau HospitalBernSwitzerland
  3. 3.Laboratory of Molecular BiologyState UniversityGhentBelgium

Personalised recommendations