Volume Selection Strategies for In Vivo Biological Spectroscopy

  • R. J. Ordidge
  • A. Connelly
  • R. E. Gordon
  • J. A. B. Lohman
Part of the NATO ASI Series book series (NSSA, volume 107)


In addition to the inherently low sensitivity of the NMR technique and low metabolite concentration, a major problem of in vivo spectroscopy has been the accurate assignment of the acquired spectrum to a specific region within the sample. Surface coils have provided one method of limiting the field of view of an NMR spectrometer, although frequently in the past in an ill-defined manner. Improvements in the use of surface coils have resulted from the introduction of multipulse techniques, the incorporation of imaging capabilities in biological spectrometers, and the use of multiple RF coils in conjunction with “depth pulses”. For most RF coil designs localization can be achieved also by the use of selective excitation in the presence of magnetic field gradients. These techniques offer complementary advantages and often can be combined to suit a particular application. There follows a brief description of several methods which use these basic volume selection techniques in various combinations.


Surface Coil Magnetic Field Gradient Sensitive Volume Spatial Selection Selective Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. H. Ackermann, T. H. Grove, G. G. Wong, D. G. Gadian, and G. K. Radda, Nature 283;167 (1980).CrossRefGoogle Scholar
  2. 2.
    R. E. Grodon, Phys. Med. Biol. 30, No. 8, 741 (1985).CrossRefGoogle Scholar
  3. 3.
    M. R. Bendali and R. E. Gordon, J. Magri. Reson. 53:365 (1983).CrossRefGoogle Scholar
  4. 4.
    M. R. Bendali and W. P. Aue, J. Magn. Reson. 54:149 (1983).CrossRefGoogle Scholar
  5. 5.
    M. R. Bendali, Chem. Phys. Lett. 99:310 (1983).CrossRefGoogle Scholar
  6. 6.
    M. R. Bendali, J. M. McKendry, I. D. Cresshull, and R. J. Ordidge, J. Magn. Reson. 60:473 (1984).CrossRefGoogle Scholar
  7. 7.
    T. C. Ng., J. D. Glickson, and M. R. Bendali, J. Magn. Reson. 1:450 (1984).CrossRefGoogle Scholar
  8. 8.
    S. J. Cox and P. Styles, J. Magn. Reson. 40:209 (1980).CrossRefGoogle Scholar
  9. 9.
    A. Haase, C. Malloy, and G. K. Radda, J. Magn. Reson. 55:164 (1983).CrossRefGoogle Scholar
  10. 10.
    J. C. Haselgrove, V. H. Subramanian, J. S. Leigh, L. Gyulai, and B. Chance, Science 220:1170 (1984).CrossRefGoogle Scholar
  11. 11.
    A. J. Shaka, J. Keeler, M. B. Smith, and R. Freeman, J. Magn. Reson. 61:175 (1985).CrossRefGoogle Scholar
  12. 12.
    R. J. Ordidge, M. R. Bendali, R. E. Gordon, and A. Connelly, “Magnetic Resonance in Biology and Medicine,” (Govil, Khetrapal and Saran, Tata, eds) McGraw-Hill, New Delhi, India (1985).Google Scholar
  13. 13.
    R. J. Ordidge, A. Connelly, and J. A. B. Lohman, J. Magn. Reson., to be published.Google Scholar
  14. 14.
    R. E. Gordon, Ph.D. Thesis, Aberdeen University (1975).Google Scholar
  15. 15.
    M. S. Silver, R. I. Joseph, and D. I. Hoult, J. Magn. Reson. 59:349 (1984).Google Scholar
  16. 16.
    T. Farrar and E. Becker, “Pulse and Fourier Transform NMR,” Academic Press, London (1971).Google Scholar
  17. 17.
    P. A. Bottomley, L. S. Smith, W. M. Leue, and C. Charles, J. Magn. Reson. 64:347 (1985).CrossRefGoogle Scholar
  18. 18.
    S. Muller, W. P. Aue, and J. Seelig, J. Magn. Reson. 63:530 (1985).CrossRefGoogle Scholar
  19. 19.
    A. A. Maudsley, S. K. Hilal, W. H. Perman, and H. E. Simon, J. Magn. Reson. 51:147 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. J. Ordidge
    • 1
  • A. Connelly
    • 1
  • R. E. Gordon
    • 1
  • J. A. B. Lohman
    • 1
  1. 1.Oxford Research Systems LimitedAbingdonEngland

Personalised recommendations