Diversity of Molecular Recognition: The Combining Sites of Monoclonal Anti Spin Label Antibodies

  • Harden M. McConnell
  • Tom Frey
  • Jacob Anglister
  • Mei Whittaker
Part of the NATO ASI Series book series (NSSA, volume 107)


Physical chemistry includes the study of how atoms come together to form molecules, and how combinations of molecules can interact with one another to form aggregates, crystals, and macromolecules. One of the most challenging problems in the area of macromolecules is the problem of protein structure, the problem of finding the “code” that specifies how a given amino acid sequence gives rise to a three-dimensional protein structure, such as an enzyme, with a highly specific biochemical function. This problem has been already attacked with considerable success using NMR methods, through studies of the folding-unfolding of polypeptides and proteins.1 Another important facet of the problem of protein structure, and the evolution of protein structures, concerns the manner in which amino acid sequences corresponding to exons, are assembled as structural units (“modules”) to form three-dimensional structures with specific functions.2


Light Chain Difference Spectrum Spin Label Antibody Molecule Germ Line Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. R. Shoemaker, P. S. Kim, D. N. Brems, S. Marqusee, E. J. York, I. M. Chaiken, J. M. Stewart, and R. L. Baldwin. Proc. Nat. Acad. Sci. USA 82, 2349–2353 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    W. Gilbert. Science 228, 823–824 (1985) and references therein.PubMedCrossRefGoogle Scholar
  3. 3.
    G. M. Griffith, C. Beretz, M. Karartinen and C. Milstein. Nature 312, 271–275 (1984).CrossRefGoogle Scholar
  4. 4.
    G. Kohler and C. Milstein. Nature 256, 495- (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    D. R. Davies and H. Metzger. Ann. Rev. Immun, 1, 87–117 (1983).CrossRefGoogle Scholar
  6. 6.
    L. M. Amzel and R. J. Poljak. Ann. Rev. Biochem. 48, 961–997 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    R. A. Dwek, S. Wain-Hobson, D. Dower, P. Gettins, B. Sutton, J. Perkins and D. Givol. Nature 266, 31–37 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    A. M. Goetze and J. H. Richards. Biochem. 17, 1733–1739 (1978).CrossRefGoogle Scholar
  9. 9.
    T. Honjo. Ann. Rev. Immun. 1, 499 (1983).CrossRefGoogle Scholar
  10. 10.
    K. Balakrishnan, F. J. Hsu, D. G. Hafeman and H. M. McConnell, BBA 721, 30–38 (1982).PubMedGoogle Scholar
  11. 11.
    J. Anglister, T. Frey and H. M. McConnell. Biochem. 23, 1138–1142 (1984).CrossRefGoogle Scholar
  12. 12.
    T. Frey, J. Anglister and H. M. McConnell. Biochem. 23, 6470–6474 (1984).CrossRefGoogle Scholar
  13. 13.
    J. Anglister, T. Frey and H. M. McConnell. Nature 315, 65–67 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Anglister, T. Frey and H. M. McConnell. Biochem. 23, 5372–5375 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Harden M. McConnell
    • 1
  • Tom Frey
    • 1
  • Jacob Anglister
    • 1
  • Mei Whittaker
    • 1
  1. 1.Stauffer Laboratory for Physical ChemistryStanford UniversityStanfordUSA

Personalised recommendations