Genetic Methods in High-Resolution NMR Studies of Proteins

  • Michael A. Weiss
  • Anna Jeitler-Nilsson
  • Nancy J. Fischbein
  • Martin Karplus
  • Robert T. Sauer
Part of the NATO ASI Series book series (NSSA, volume 107)


Many biomolecules have long rotational correlation times and thus give rise to broad NMR resonances in solution. A variety of strategies have been devised to overcome this limitation. Resolution enhancement algorithms have permitted the study of flexible regions of structures as large as Tobacco Mosaic Virus (1–3); one-dimensional and two-dimensional pulse sequences may also be used to selectively observe flexible spin systems (4,5). In addition, the introduction of nuclear spin labels has facilitated the identification of individual residues (6–9). In this paper we describe how the techniques of molecular biology may be employed to facilitate the NMR study of large proteins. Illustrative examples will be taken from our studies of the bacteriophage λ repressor (10–12).


Tobacco Mosaic Virus Broad Resonance Major Groove Methyl Resonance Aliphatic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Wade-Jardetzky, R. P. Bray, W. W. Conover, O. Jardetzky, N. Geisler, and K. Weber, Differential Mobility of the N-Terminal Headpiece in the lac Repressor Protein, J. Mol. Biol. 128:259 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    O. Jardetzky, K. Akasaka, R. Vogel, S. Morris, and K. C. Holmes, Unusual Segmental Flexibility in a Region of Tobacco Mosaic Virus Coat Protein, Nature 273:564 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Highsmith, K. Akasaka, M. Konrad, R. Goody, K. Holmes, N. Wade-Jardetzky, and O. Jardetzky, Internal Motions in Myosin, Biochemistry 18:4238 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    I. D. Cambell, C. M. Dobson, R. J. P. Williams, and P. E. Wright, Pulse Methods for the Simplification of Proton NMR Spectra, FEBS Lett. 57:96 (1975).CrossRefGoogle Scholar
  5. 5.
    M. A. Weiss, J. L. Eliason, and D. J. States, Dynamic Filtering by Two-Dimensional NMR with Application to Phage X Repressor, Proc. Natl. Acad. Sci. USA 81:6019 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    M. A. C. Jarema, K. T. Arndt, M. Savage, P. Lu, and J. H. Miller, Genetic Insertion of Nuclear Spin Labels in the lac Repressor, J. Biol. Chem. 256:6544 (1981).PubMedGoogle Scholar
  7. 7.
    M. A. C. Jarema, P. Lu, and J. H. Miller, Genetic Assignment of Resonances in the NMR Spectrum of a Protein: lac Repressor, Proc. Natl. Acad. Sci. USA 78:2707 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    R. H. Griffey, C. D. Poulter, A. Bax, B. L. Hawkins, Z. Yamaizumi, and S. Nishimura, Multiple Quatum Two-Dimensional 1H-15N NMR Spectroscopy: Chemical Shift Correlation Maps for Exchangable Imino Protons of E. coli tRNAmet in Water, Proc. Natl. Acad. Sci. USA 80:5895 (1983).CrossRefGoogle Scholar
  9. 9.
    R. H. Griffey, A. G. Redfield, R. E. Loomis, and F. W. Dahlquist, Nuclear Magnetic Resonance Observation and Dynamics of Specific Amide Protons in T4 Lysozyme, Biochemistry 24:817 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    M. A. Weiss, M. Karplus, D. J. Patel, and R. T. Sauer, Solution NMR Studies of Intact λ Repressor, J. Biomol. Struc. Dyn. 1:150 (1983).Google Scholar
  11. 11.
    M. A. Weiss, R. T. Sauer, D. J. Patel, and M. Karplus, The N-Terminal Arm of λ Repressor: a 1H-NMR Study, Biochemistry 23:5090 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    M. A. Weiss, M. Karplus, and R. T. Sauer, Complete Assignment of the Aromatic Resonances of λ Repressor, manuscript in preparation.Google Scholar
  13. 13.
    C. O. Pabo, R. T. Sauer, J. M. Sturtevant, and M. Ptashne, The λ Repres-sor Contains Two Domains, Proc. Natl. Acad. Sci. USA 76:1608 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    R. T. Sauer, C. O. Pabo, B. J. Meyer, M. Ptashne, and K. C. Backman, Regulatory Functions of the X Repressor Reside in the Amino Terminal Domain, Nature 279:396 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    C.O. Pabo and M. Lewis, The Operator-Binding Domain of X Repressor: Structure and DNA Recognition, Nature 298:443 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Lewis, A. Jeffrey, J. Wang, R. Ladner, M. Ptashne, and C. O. Pabo, Structure of the Operator-Binding Domain of Bacteriophage λ Repressor: Implications for DNA Recognition and Gene Regulation, Cold Spring Harbor Symp. Quant. Biol. 47:435 (1983).CrossRefGoogle Scholar
  17. 17.
    K. Backman, M. Ptashne, and W. Gilbert, Construction of Plasmids Carrying the cI Gene of Bacteriophage Lambda, Proc. Natl. Acad. Sci. USA 73:4174 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Amann, J. Brosius, and M. Ptashne, Vectors Bearing a Hybrid trp-lac Promoter Useful for Regulated Expression of Cloned Genes in E. coli, Gene 25:167 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    H. C. M. Nelson, M. Hecht, and R. T. Sauer, Mutations Defining the Operator-Binding Sites of Bacteriophage λ Repressor, Cold Spring Harbor Symp. Quant. Biol. 47:441 (1983).CrossRefGoogle Scholar
  20. 20.
    M. Hecht, H. C. M. Nelson, and R. T. Sauer, Mutations in λ Repressor’s Amino-Terminal Domain: Implications for Protein Stability and DNA Binding, Proc. Natl. Acad. Sci. USA 80:2676 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    H. A. deBoer, L. J. Cornstock, and M. Vasser, The tac promoter: a Functional Hybrid Derived from trp and lac Promoters, Proc. Natl. Acad. Sci. USA 80:21 (1983).CrossRefGoogle Scholar
  22. 22.
    E. R. Zuiderweg, R. Kaptein, and K. Wuthrich, Secondary Structure of the lac Repressor DNA-Binding Domain by Two-Dimensional 1H Nuclear Magnetic Resonance in Solution, Proc. Natl. Acad. Sci. USA 80:5837 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    R. T. Sauer and R. Anderegg, Primary Structure of the λ Repressor, Biochemistry 17:1092 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    C. O. Pabo and R. T. Sauer, Protein-DNA Recognition, Ann. Rev. Biochem. 53:293 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    C. O. Pabo, W. Kr ovatin, A. Jeffrey, and R. T. Sauer, N-Terminal Arms of X Repressor Wrap around the Operator DNA, Nature 298:441 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    J. L. Eliason, M. A. Weiss, and M. Ptashne, NH2-Terminal Arm of Phage λ Repressor Contributes Energy and Specificity to Repressor Binding and Determines the Effects of Operator Mutations, Proc. Natl. Acad. Sci. USA 82:2339 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael A. Weiss
    • 1
  • Anna Jeitler-Nilsson
    • 2
  • Nancy J. Fischbein
    • 1
  • Martin Karplus
    • 1
  • Robert T. Sauer
    • 2
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations