Advertisement

Proton Assignment Strategies in Nucleic Acid NMR Studies

  • Brian R. Reid
Part of the NATO ASI Series book series (NSSA, volume 107)

Abstract

The last few years have seen a rapid expansion in our ability to study nucleic acids and proteins of increasing size and spectral complexity by high-resolution NMR spectroscopy (see Kearns. 1984. and Wemmer & Reid. 1985. for recent reviews). An important factor in our ability to study biopolymers in the 8.000 – 16.000 mol. wt. range is the sensitivity and resolution of modern NMR spectrometers with magnetic field strengths in the 11–12 Tesia range (ca. 500 MHz). Even at such frequencies, the NMR spectra of 10.000 dalton biopolymers are very crowded, with many overlapping resonances, and the introduction of two-dimensional NMR spectroscopy (2DNMR) has been an equally important development. As in all forms of spectroscopy, the ability to specifically assign the majority of resonance peaks is the first crucial step in any detailed study and 2DNMR has facilitated the ease and speed of assigning relatively complicated spectra. In this paper I shall present the techniques and strategies for assigning nucleic acid NMR spectra, with particular emphasis on short DNA molecules containing 10–20 base pairs. In presenting these assignment methods I shall draw on examples taken from the work of several members of my laboratory to whom I am grateful, particularly Dennis Hare. David Wemmer and Shan-Ho Chou.

Keywords

Cross Peak NOESY Spectrum Nuclear Overhauser Effect Cosy Spectrum Imino Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnott. S. & Chandrasekaran. R. (1984) — private communication.Google Scholar
  2. Chou S.H., Wemmer D.E., Hare D.R. & Reid B.R. (1984) Biochemistry. 23. 2257.PubMedCrossRefGoogle Scholar
  3. Crippen G.M. (1981) Distance Geometry and Conformational Calculations. Research Studies Press/Wiley. Chichester.Google Scholar
  4. Dickerson R.E. & Drew H.R. (1981) J. Mol. Biol., 149. 761.PubMedCrossRefGoogle Scholar
  5. Hare D.R., Wemmer D.E., Chou S.H., Drobny G. & Reid B.R. (1983) J. Mol. Biol., 171. 319.PubMedCrossRefGoogle Scholar
  6. Hare. D.R. & Reid. B.R. (1985) Biochemistry, submitted.Google Scholar
  7. Kearns D.R. (1984) CRC Crit. Rev. Biochem., 15. 237.PubMedCrossRefGoogle Scholar
  8. Scheek R.M., Russo N., Boelens R. & Kaptein R. (1983) J. Am. Chem. Soc. 105. 2914.CrossRefGoogle Scholar
  9. Scheek R.M., Boelens R., Russo N., van Boom J.H. & Kaptein R. (1984) Biochemistry, 23. 1371.PubMedCrossRefGoogle Scholar
  10. States D.J., Haberkorn R.A. & Ruben D.J. (1982) J. Magn. Reson., 48. 286.CrossRefGoogle Scholar
  11. Wagner G. & Wuthrich K. (1982) J. Mol. Biol., 155. 347.PubMedCrossRefGoogle Scholar
  12. Wemmer D.E., Chou S.H., Har D.R. & Reid B.R. (1984 a) Biochemistry. 23. 2262.PubMedCrossRefGoogle Scholar
  13. Wemmer D.E., Chou S.H. & Reid B.R. (1984 b) J. Mol. Biol., 180. 41.PubMedCrossRefGoogle Scholar
  14. Wemmer D.E. & Reid B.R. (1985) Ann. Rev. Phvs. Chem., 36. 105.CrossRefGoogle Scholar
  15. Wemmer D.E., Chou S.H., Hare D.R. & Reid B.R. (1985) Nucl. Acids Res., 13. 3755.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Brian R. Reid
    • 1
  1. 1.Chemistry and Biochemistry DepartmentsUniversity of WashingtonSeattleUSA

Personalised recommendations