Advertisement

High Field NMR Imaging and Spectroscopy

  • Paul A. Bottomley
Part of the NATO ASI Series book series (NSSA, volume 107)

Abstract

The xumbination. of proton (1H) NNR imaging and phosphorus (31P), carbon (C) and H NNR chemical shift spectroscopy techniques for clinical applications has been a major goal of our research program. It is hoped that such a combination could provide a comprehensive dossier of the bodies’ anatomical and biochemical function to serve in the monitoring of disease states and their response to therapy and recovery. It was our perception that the major problems involved in combining the two technologies were initially instrumental and not due to any insurmountable physical obstacles. Thus the stringent requirements of chemical shift spectroscopy in the body necessitated the introduction of highly homogeneous, high field, large bore superconducting magnets. The relatively high NNR frequencies demanded of the NNR coils used in these magnet systems necessitated the development of new RF coil designs for 1H NNR imaging. The application of strong gradient magnetic fields to achieve spatial localization in NNR imaging is usually incompatible with the high magnetic field homogeneity required for resolution of chemical shift information. Hence new techniques for obtaining spatially localized spectra were required.

Keywords

Power Deposition Bowman Gray School Picture Point Strong Gradient Magnetic Field Heart Liver Kidney 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Bottomley, W. A. Edelstein, W. M. Leue, H. R. Hart, J. F. Schenck, and R. W. Redington, Magn. Reson. Med. 1:69 (1982).Google Scholar
  2. 2.
    P. A. Bottomley, H. R. Hart, W. A. Edelstein, J. F. Schenck, W. M. Leue, O. M. Mueller, and R. W. Redington, Radiol. 150:441 (1984).Google Scholar
  3. 3.
    D. W. Alderman and D. M. Grant, J. Magn. Reson. 36:447 (1979).CrossRefGoogle Scholar
  4. 4.
    P. A. Bottomley, in.: “NMR Imaging Proc. Internati. Symp. on NMR Imaging: Winston-Salem, NC, Oct. 1–3, 1984,” R. L. Witcofski, N. Karstaedt, and C. L. Partain, eds. Bowman Gray School of Medicine, Winston-Salem, NC:25 (1982).Google Scholar
  5. 5.
    C. E. Hayes, W. A. Edelstein, J. F. Schenck, O. M. Mueller, and M. Eash, J. Magn. Res, (in press 1985).Google Scholar
  6. 6.
    W. A. Edelstein, O. M. Mueller, P. A. Bottomley, J. F. Schenck, L. S. Smith, M. O’Donnell, W. M. Leue, and R. W. Redington, Magn. Reson. Med. 1:113 (1984).Google Scholar
  7. 7.
    W. A. Edelstein, J. F. Schenck, H. R. Hart, C. J. Hardy, T. H. Foster, and P. A. Bottomley, J. Am. Med. Assoc. 253:828 (1985).CrossRefGoogle Scholar
  8. 8.
    J. F. Schenck, H. R. Hart, T. H. Foster, W. A. Edelstein, P. A. Bottomley, R. W. Redington, C. J. Hardy, R. A. Zimmerman, and L. T. Bilaniuk, Am. J. Neuroradiol. 6:193 (1985).Google Scholar
  9. 9.
    W. A. Edelstein, P. A. Bottomley, H. R. Hart, and L. S. Smith, J. Comp. Assist. Tomogr. 7:391 (1983).CrossRefGoogle Scholar
  10. 10.
    P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, Med. Phys. 11:245 (1984).CrossRefGoogle Scholar
  11. 11.
    D. I. Hoult and P. C. Lauterbur, J. Magn. Reson. 34:425 (1979).CrossRefGoogle Scholar
  12. 12.
    P. A. Bottomley and E. R. Andrew, Phys. Med. Biol. 23:630 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    P. A. Bottomley and W. A. Edelstein, Med. Phys. 8:510 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    P. A. Bottomley, R. W. Redington, W. A. Edelstein, and J. F. Schenck, Magn. Reson. Med. 2:336 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    P. A. Bottomley, W. A. Edelstein, H. R. Hart, J. F. Schenck, and L. S. Smith, Magn. Reson. Med. 1:410 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    P. A. Bottomley, T. H. Foster, and R. D. Darrow, J. Magn. Reson 59:338 (1984).CrossRefGoogle Scholar
  17. 17.
    K. L. Behar, J. A. den Hollander, M. E. Stromski, T. Ogino, R. Shulman, O. A. C. Petroff, and J. W. Prichard, Proc. Natl. Acad. Sci. USA 80:4945 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    P. A. Bottomley, W. A. Edelstein, T. H. Foster, and W. A. Adams, Proc. Natl. Acad. Sci. USA 82:2148 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    P. A. Bottomley, T. H. Foster, and W. M. Leue, Lancet i:1120 (1984).CrossRefGoogle Scholar
  20. 20.
    P. A. Bottomley, T. H. Foster, and W. M. Leue, Proc. Natl. Acad. Sci. USA 81:6856 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    P. A. Bottomley, L. S. Smith, W. A. Edelstein, H. R. Hart, O. M. Mueller, W. M. Leue, R. Darrow, and R. W. Redington, Magn. Reson. Med. 1:111 (1984).CrossRefGoogle Scholar
  22. 22.
    P. A. Bottomley and W. A. Edelstein, US Patent 4506223 (1985).Google Scholar
  23. 23.
    P. A. Bottomley, Science (in press, 1986).Google Scholar
  24. 24.
    P. A. Bottomley, R. J. Herfkens, L. S. Smith, S. Brazzamano, R. Blinder, L. W. Hedlund, J. L. Swain, and R. W. Redington (submitted for publication, 1985).Google Scholar
  25. 25.
    P. A. Bottomley, L. S. Smith, W. M. Leue, and C. Charles, J. Magn. Reson. (in press, 1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paul A. Bottomley
    • 1
  1. 1.General Electric Corporate Research and Development CenterSchenectadyUSA

Personalised recommendations