The Use of Nuclear Magnetic Resonance Rotating Frame Experiments for One Dimensional Discrimination of Metabolites in Tissues

  • Gerald B. Matson
  • Thomas Schleich
  • Michael Garwood
  • Ranald T. Bogusky
  • Larry Cowgill
Part of the NATO ASI Series book series (NSSA, volume 107)


Over the last decade nuclear magnetic resonance spectroscopy (MIR) has emerged as the premier tool for the non-invasive study of tissue metabolism and its regulation, for examining cellular energetics, for monitoring physiologically relevant metabolic events, and for the assessment of tissue viability (1–11). This emergence to a position of prominence has occurred despite several restrictions inherent to the technique: observation is limited to NMR-active nuclei such as 1H, 19F, 31P, 23Na, 13C, 15N, and 39K, present in low molecular weight compounds or ions and existing unbound in the tissue milieu, and for the most part at concentration levels exceeding 0.1 mM. Despite these restrictions, NMR spectroscopy has become an extremely powerful tool by virtue of its ability to measure steady state metabolite levels and elucidate metabolic pathways and controls; to monitor intracellular pH; to assess reaction rates and cellular fluxes using specialized IWR techniques; and to perform these experiments in non-invasive, and hence a non-destructive, manner. The important movement of this research to in vivo experiments in animals has been facilitated by the recent development of wide bore, superconducting NMR magnets.


Surface Coil Outer Medulla Nutational Frequency Nutation Angle Evolution Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.T. Burt, S.M Cohen, and M. Barany, Analysis of intact tissue with 31P nmr, Ann. Rev. Biophys, Biosngr. 8: 1–25 (1979).CrossRefGoogle Scholar
  2. 2.
    D.G. Gadian, G.K. Padda, R.E. Richards, and P.J. Seeley, 31P NMR in living tissue: The road from a promising to an important tool in biology, in: “Biological Applications of Magnetic Resonance”, R.G. Shulman, ed., Academic Press, New York, pp. 463–535 (1979).Google Scholar
  3. 3.
    T. Glonek, Applications of 31P NMR to biological systems with emphasis on intact tissue determinations, in: “Phosphorus Chemistry Directed Toward Biology”, W.J. Stec, ed., Pergamon Press, Oxford, pp. 157–174 (1980).Google Scholar
  4. 4.
    D.P. Hollis, Phosphorus IMR of cells tissues, and organelles, in: “Biological Magnetic Resonance”, L.J. Berliner and J. Ruben, ed., Plenum Press, New York, pp. 1–44 (1980).CrossRefGoogle Scholar
  5. 5.
    I.K. O’Neill and C.P. Richards, Biological 31P NMR spectroscopy, Ann Reports NMr Spect. 10A: 134–236 (1980).Google Scholar
  6. 6.
    T. Glonek, C.T. Burt, and M. Barany, NMR analysis of intact tissue including several exanples of normal and diseased human muscle determinations, in: “NMR in Medicine”, R. Demadian, ed., Springer-Verlag, pp. 121–159 (1981).CrossRefGoogle Scholar
  7. 7.
    A.I. Scott and R.L. Baxter, Applications of 13C MIR to metabolic studies, Ann Rev. Biophys. Bioengr. 10: 151–174 (1981).CrossRefGoogle Scholar
  8. 8.
    D.G. Gadian, “Nuclear magnetic resonance and its application to living systems”, Clarendon Press, Oxford (1982).Google Scholar
  9. 9.
    R.A. Iles, A.N. Stevens, and J.R. Griffiths, NMR studies of metabolites in living tissue, Prog. NMR Spect. 15: 49–200 (1982).CrossRefGoogle Scholar
  10. 10.
    D.G. Gadian, Whole organ metabolism studied by NMR, Ann. Rev. Biophys. Bioengr. 12: 69–89 (1983).CrossRefGoogle Scholar
  11. 11.
    M. Barany and T. Glonek, Identification of diseased states by phosphorus-31 NMR, in: “Phosphorus-31 NMR, principles and applications”, D.G. Gorenstein, ed., Academic Press, New York, pp. 511–546 (1984).Google Scholar
  12. 12.
    J.J.H. Ackerman, T.H. Grove, G.G. Wong, D.G. G&dian, and G.K. Radda, Mapping of metabolites by 31P IWR using surface coils, Nature 283: 167–170 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Schleich, G.B. Matson, J.A. Willis, G. Acosta, C. Serdahl, P. Campbell, and M. Garwood, Surface coil phosphorus-31 NMR studies of the intact eye, Exp. Eye Res. 40: 343–355 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    M.H. Levitt, Symmetrical conposite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity, J. Magn. Reson. 50: 95-no (1982).CrossRefGoogle Scholar
  15. 15.
    M.H. Levitt and R.R. Ernst, Composite pulses constructed by a recursive expansion procedure, J. Magn. Reson. 55: 247–254 (1983);CrossRefGoogle Scholar
  16. 15a.
    A.J. Shaka and R. Freeman, Spatially selective radiofrequency pulses, J. Magn. Reson. 59: 169–176 (1984).CrossRefGoogle Scholar
  17. 16.
    R. Tycko, H.M. Cho, E. Schneider, and A. Pines, Composite pulses without phase distortion, J. Magn. Reson. 61: 90–101 (1985);CrossRefGoogle Scholar
  18. 16a.
    R. Tyko, Broadband population inversion, Phys. Rev. Lett. 51: 775–777 (1983).CrossRefGoogle Scholar
  19. 17.
    P.E. Hanley, and R.E. Gordon, The use of high-order gradients to vary the spatial extent of BO homogeneity in a high resolution NMR experiment, J. Magn. Reson, 45: 520–524 (1981);CrossRefGoogle Scholar
  20. 17a.
    R.E. Gordon, P.E. Hanley, and D. Shaw, Topical magnetic resonance, Prog. NMR Spect. 15: 1–47 (1982).CrossRefGoogle Scholar
  21. 18.
    M.R. Bendali and D.T. Pegg, Theoretical description of depth pulse sequences, on and off resonance, including inprovements and extensions thereof, Magn. Reson. Med. 2: 91–113 (1985);CrossRefGoogle Scholar
  22. 18a.
    M.R. Bendali, Elimination of high-flux signals near surface coils and field gradient sanple localization using depth pulses, J. Magn. Reson. 59: 406–429 (1984);CrossRefGoogle Scholar
  23. 18b.
    M.R. Bendali, Surface coils and depth resolution using the spatial variation of radiofrequency field, in: “Biomedical Magnetic Resonance”, T.L. James and A.R. Margulis, ed., Radiology Research and Education Foundation, San Francisco, pp. 99–126 (1984).Google Scholar
  24. 19.
    AJ. Shaka, J. Keeler, M.B. Smith, and R. Freeman, Spatial localization of NMR signals in an inhomogeneous radiofrequency field, J. Magn. Reson. 42: 175–180 (1985);Google Scholar
  25. 19a.
    R. Tycko and A. Pines, Spatial localization of NNR signals by narrowband inversion, J. Magn. Reson. 60: 156–160 (1984).CrossRefGoogle Scholar
  26. 20.
    M. Garwood, T. Schleich, B.D. Ross, G.B. Matson, and W.D. Winters, A modified rotating frame experiment based on a Fourier series window function: application to in vivo spatially localized NMR spectroscopy, J. Magn. Reson. (in press).Google Scholar
  27. 21.
    K.N. Scott, Localization techniques for nonproton imaging or nuclear magnetic resonance spectroscopy in vivo, in: “Biomedical Magnetic Resonance”, T.L. James and A.R. Margulis, ed., Radiology Education and Research Foundation, San Francisco, pp. 79–97 (1984).Google Scholar
  28. 22.
    P.A. Bottcmley, T.B. Foster, and R.D. Darrow: Depthrresolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 13C NMR, J. Magn. Reson. 59: 338–342 (1984).CrossRefGoogle Scholar
  29. 23.
    J.C. Haselgrove, V.H. Subramanian, J.S. Leigh Jr., L. Coulai, and B. Chance, In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance, Gcience 220: 1170–1173 (1983).CrossRefGoogle Scholar
  30. 24.
    Y. Manassen and G. Navon, A constant gradient experiment for chemical-shift imaging, J. Magn. Reson. 61: 363–370 (1985).CrossRefGoogle Scholar
  31. 25.
    J.F. Martin and C.G. Wade, Chemical-shift encoding in MIR images, J. Magn Reson. 61: 153–157 (1985).CrossRefGoogle Scholar
  32. 26.
    P.C. Lauterbur, D.N. Levin, and R.B. Marr, Theory and simulation of NMR spectroscopic imaging and field plotting by projection reconstruction involving an intrinsic frequency dimension, J. Magn. Reson. 59: 536–541 (1984).CrossRefGoogle Scholar
  33. 27.
    D.I. Hoult, Rotating frame zeugnatography, J. Magn. Reson. 33: 183–197 (1979).CrossRefGoogle Scholar
  34. 28.
    A. Haase, C. Malloy, and G.K. Radda, Spatial localization of high resolution 31P spectra with a surface coil, J. Magn. Reson. 55: 164–169 (1983).CrossRefGoogle Scholar
  35. 29.
    M. Garwood, T. Schleich, G.B. Matson, and G. Acosta, Spatial localization of tissue metabolites by phosphorus-31 NMR rotating-frame zeugmatography, J. Magn. Reson. 60: 268–279 (1984).CrossRefGoogle Scholar
  36. 30.
    T.C. Farrar and E.D. Becker, “Pulse and Fourier transform MIR”, Academic Press, New York (1971).Google Scholar
  37. 31.
    E.D. Becker, “High resolution MIR, theory and chemical applications”, 2 edition, Academic Press, New York (1980).Google Scholar
  38. 32.
    M.L. Martin, J.-J. Delpuech, and G.J. Martin, “Practical NMR spectroscopy”, Heyden, Philadelphia (1980).Google Scholar
  39. 33.
    E. Fukushima and S.B.W. Roeder, “Experimental pulse MIR, a nuts and bolts approach”, Addison-Wesley, Reading (1981).Google Scholar
  40. 34.
    O. Jardetzky and G.C.K. Roberts, “NMR in molecular biology”, Academic Press, New York (1981).Google Scholar
  41. 35.
    E.D. Becker, J.A. Ferretti, and P.B. Gambhir, Selection of optimum parameters for pulse Fourier transform nuclear magnetic resonance, Anal. Chem. 51: 1413–1420 (1979).CrossRefGoogle Scholar
  42. 36.
    T. Schleich, J.A. Willis, and G.B. Matson, Longitudinal (T1) relaxation times of phosphorus-metabolites in the bovine and rabbit lens, Exp. Eye Res. 29: 455–468 (1984).CrossRefGoogle Scholar
  43. 37.
    A. Haase, W. Hanicke, and J. Frahm, The influence of experimental parameters in surface coil MIR, J. Magn. Reson. 56: 401–412 (1984);CrossRefGoogle Scholar
  44. 37a.
    J.L. Evelhoch, M.G. Crowley, and J.J.H. Ackerman, Signal-to-noise optimization and observed volume localization with circular surface coils, J. Magn. Reson. 56: 110–124 (1984).CrossRefGoogle Scholar
  45. 38.
    J.H. Prince and E. Eglitis, The crystalline Lens, in: “The Rabbit in Eye Research”, J.H. Prince, ed., Charles C. Thomas, Springfield, p. 362 (1964).Google Scholar
  46. 39.
    H. Davson, The intraocular Fluids. The Intraocular Pressure, in: “The eye”, 2 Ed., Vol. 1, Vegetative Physiology and Biochemistry, H. Davson, ed., Academic Press, London, p. 147 (1969).Google Scholar
  47. 40.
    G.B. Matson, T. Schleich, C. Serdahl, G. Acosta, and J.A. Willis, Measurement of longitudinal relaxation times using surface coils, J. Magn. Reson. 56: 200–206 (1984).CrossRefGoogle Scholar
  48. 41.
    H. Davson, “The Physiology of the Eye”, 3 Ed., Academic Press, New York, p. 73 (1972).Google Scholar
  49. 42.
    M. Garwood, T. Schleich, G.B. Natson, and G. Acosta, (manuscript in preparation).Google Scholar
  50. 43.
    P.A. Sher, P.J. Bore, J. Papatheofanis, and G.K. Radda, Nondestructive measurement of metabolites and tissue pH in the kidney by 31P nuclear magnetic resonance, Brit. J. Path. 60: 632–641 (1979).Google Scholar
  51. 44.
    G.K. Radda, J. J.H. Ackerman, P. Bore, P. Sehr, G.G. Wong, B.D. Ross, Y. Oreen, S. Bartlett, and M. Lowry, 31P studies on kidney intracellular pH in acute renal acidosis, Int. J. Biochem. 12: 277–281 (1980).PubMedCrossRefGoogle Scholar
  52. 45.
    J.J.H. Ackerman, M. Lowry, G.K. Radda, B.D. Ross, and G.G. Wong, The role of intrarenal pH in regulation of ammoniagenesis: 31P NMR studies of the isolated perfused rat kidney, J. Physiol. 319: 65–79 (1981).PubMedGoogle Scholar
  53. 46.
    G.G. Wong and B.D. Ross, Application of phosphorus nuclear magnetic resonance to problems of renal physiology and metabolism, Mineral Electrolyte Metab. 9: 282–289 (1983).Google Scholar
  54. 47.
    R.S. Balaban, D.G. Gadian, and G.K. Radda, Phosphorus nuclear magnetic resonance study of the rat kidney in vivo, Kidney Int. 20: 575–579 (1981).PubMedCrossRefGoogle Scholar
  55. 48.
    A.P. Koretsky, S. Wang, J. Murphy-Boesch, M. P. Klein, T. L. James, and M. W. Weiner, 31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils, Proc. Natl.Acad. Sci. USA 80: 7491–7495 (1983).PubMedCrossRefGoogle Scholar
  56. 49.
    N.J. Siegel, M.J. Avison, H.F. Reilly, J.R. Alger, and R.G. Shulman, Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl determined by 31P NMR, Amer. J. Physiol. 245: F530–F534 (1983).PubMedGoogle Scholar
  57. 50.
    L.D. Cowgill, G.B. Matson, and R.T. Bogusky, Amplication of 31P nuclear magnetic resonance to the study of renal phosphate excretion in vivo, in: Biochemical aspects of kidney function, R. Dzurik, ed., Nijhoff, Boston, and Avicenum, Prague (in press).Google Scholar
  58. 51.
    R.T. Bogusky, M. Garwood, G.B. Matson, G. Acosta, L.D. Cowgill, and T. Schleich, Localization of phosphorus metabolites and sodium ions in the rat kidney, Magn. Reson. Med. (in press).Google Scholar
  59. 52.
    B.K. Urbaitis and R.H. Kessler, Concentration of adenine nucleotide compounds in renal cortex and medulla, Nephron. 6: 217–234 (1969).PubMedCrossRefGoogle Scholar
  60. 53.
    R.S. Balaban, D.G. Gadian, G.K. Radda, and G.G. Wong, An NMR chamber for the study of aerobic suspensions of cells and organelles, J. Analyt. Biochem. 116: 450–455 (1981).CrossRefGoogle Scholar
  61. 54.
    F.G. Tobak, N.G. Ordonez, S.L. Bortz, and B.H. Spargo, Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats, Lab. Invest. 34: 115–124 (1976).Google Scholar
  62. 55.
    M.I. Hrovat, C.O. Britt, T.C. Moore, and C.G. Wade, An alternating pulsed magnetic field gradient apparatus for NMR self-diffusion measurements, J. Magn. Reson. 49: 411–418 (1982).CrossRefGoogle Scholar
  63. 56.
    P. Styles, C.A. Scott, and G.K. Radda; A method for localizing high-resolution NMR spectra from human subjects, Magn. Reson. Med. 2: 402–409 (1985).PubMedCrossRefGoogle Scholar
  64. 57.
    M.R. Bendali, Portable NMR sample localization method using inhomogeneous RF irradiation coils, Chem. Phys. Lett. 99: 310–315 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gerald B. Matson
    • 1
  • Thomas Schleich
    • 1
    • 2
  • Michael Garwood
    • 2
  • Ranald T. Bogusky
    • 3
  • Larry Cowgill
    • 4
  1. 1.NMR FacilityUniversity of CaliforniaDavisUSA
  2. 2.Department of ChemistryUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of Internal Medicine, School of MedicineUniversity of CaliforniaDavisUSA
  4. 4.Department of Medicine, School of Veterinary MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations