Advertisement

Nitrogen NMR pp 319-366 | Cite as

Applications of 14N NMR Data in the Study of Inorganic Molecules

  • N. Logan

Abstract

The foregoing chapters have indicated that in spite of inherent difficulties, 14N NMR spectroscopy has proved to be of considerable value in the study of nitrogen compounds. For example, the last few years have witnessed an extensive and rewarding application of the technique in organic chemistry (Chapter 4). Three recent general reviews [1–3] of nitrogen nuclear magnetic resonance including both 14N and 15N, show that less attention has been paid to the study of inorganic molecules and reasons for this neglect are readily apparent. A high proportion of inorganic compounds are solids of generally low solubility, yet the lower limit of concentration for observance of suitably intense 14N signals by direct continuous wave measurement is as high as ca. 1M. Even if a solvent can be found which shows little or no interaction with a nitrogen-containing inorganic solute, this level of solubility is frequently difficult or impossible to achieve. Valuable information can result from 14N NMR studies of solids (Section 6.4) but thus far, few studies of this type have been reported.

Keywords

Chemical Shift Knight Shift Inorganic Molecule Ligand Exchange Process Acetyl Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. F. MOONEY and P. H. WINSON, in Annual Reports on N.M.R. Spectroscopy, Vol. 2 (E. F. MOONEY, Ed.), Academic Press, London and New York, 1969, p. 125.Google Scholar
  2. 2.
    E. W. RANDALL and D. G. GILLIES, in Progress in N.M.R. Spectroscopy, Vol. 6 (J. W. EMSLEY, J. FEENEY, and L. H. SUTCLIFFE, Eds.), Pergamon Press, Oxford, 1971, p. 119.Google Scholar
  3. 3.
    M. WITANOWSKI and G. A. WEBB, in Annual Reports on N.M.R. Spectroscopy, Vol. 5 (E. F. MOONEY, Ed.), Academic Press, London and New York, 1972, 395.Google Scholar
  4. 4.
    W. G. PROCTOR and F. C. YU, Phys. Rev., 77, 717 (1950).Google Scholar
  5. 5.
    K. F. CHEW, W. DERBYSHIRE, and N. LOGAN, unpublished results.Google Scholar
  6. 6.
    B. M. SCHMIDT, L. C. BROWN, and D. H. WILLIAMS, J. Mol Spectrosc., 2, 539 (1958).Google Scholar
  7. 7.
    B. M. SCHMIDT, L. C. BROWN, and D. H. WILLIAMS, J. Mol. Spectrosc., 2, 551 (1958).Google Scholar
  8. 8.
    B. M. SCHMIDT, L. C. BROWN, and D. H. WILLIAMS, J. Mol. Spectrosc., 3, 30 (1959).Google Scholar
  9. 9.
    J. MASON and W. van BRONSWIJK, J. Chem. Soc. A, 791 (1971).Google Scholar
  10. 10.
    J. MASON, Personal Communication.Google Scholar
  11. 11.
    M. WITANOWSKI and H. JANUSZEWSKI, J. Chem. Soc. B, 1062 (1967).Google Scholar
  12. 12.
    R. BRAMLEY, B. N. FIGGIS, and R. S. NYHOLM, J. Chem. Soc. A, 861 (1967).Google Scholar
  13. 13.
    L.-O. ANDERSSON and J. MASON, Chem. Comm., 99 (1968).Google Scholar
  14. 14.
    L.-O. ANDERSSON, J. MASON, and W. van BRONSWIJK, J. Chem. Soc. A, 296 (1970).Google Scholar
  15. 15.
    P. HAMPSON and A. MATHIAS, Mol. Phys., 11, 541 (1966).Google Scholar
  16. 16.
    A. MATHIAS, Mol. Phys., 12, 381 (1967).Google Scholar
  17. 17.
    P. HAMPSON and A. MATHIAS, Mol. Phys., 13, 361 (1967).Google Scholar
  18. 18.
    P. HAMPSON and A. MATHIAS, Chem. Comm., 371 (1967).Google Scholar
  19. 19.
    P. HAMPSON and A. MATHIAS, Chem. Comm., 825 (1968).Google Scholar
  20. 20.
    P. HAMPSON and A. MATHIAS, J. Chem. Soc. B, 673 (1968).Google Scholar
  21. 21.
    E. B. BAKER and W. L. BURD, Rev. Sci. Instruments, 28, 313 (1957).Google Scholar
  22. 22.
    E. B. BAKER, J. Chem. Phys., 37, 911 (1962).Google Scholar
  23. 23.
    W. MCFARLANE and R. R. DEN, J. Chem. Soc. A, 1535 (1968).Google Scholar
  24. 24.
    G. A. OLAH and T. E. KIOVSKY, J. Amer. Chem. Soc., 90, 4666 (1968).Google Scholar
  25. 25.
    D. HERBISON-EVANS and R. E. RICHARDS, Mol. Phys., 8, 19 (1964).Google Scholar
  26. 26.
    A. H. NORBURY and A. I. P. SINHA, Quart. Rev., 24, 69 (1970).Google Scholar
  27. 27.
    D. MARTIN, Angew. Chem., Eng. Ed., 3, 311 (1964).Google Scholar
  28. 28.
    E. L. WAGNER, J. Chem. Phys., 43, 2728 (1965).Google Scholar
  29. 29.
    K. F. CHEW, W. DERBYSHIRE, N. LOGAN, A. H. NORBURY, and A. L P. SINHA, Chem. Comm., 1708 (1970).Google Scholar
  30. 30.
    K. M. MACKAY and S. R. STOBART, Spectrochim. Acta, 27A, 923 (1971).Google Scholar
  31. 31.
    J. NELSON, R. SPRATT, and S. M. NELSON, J. Chem. Soc A, 583 (1970).Google Scholar
  32. 32.
    N. GROVING and A. HOLM, Acta. Chem. Scand., 19, 1768 (1965).Google Scholar
  33. 33.
    M. WITANOWSKI, J. Amer. Chem. Soc., 90, 5683 (1968).Google Scholar
  34. 34.
    J. N. SHOOLERY, J. Chem. Phys., 31, 1427 (1959).Google Scholar
  35. 35.
    Tables of Interatomic Distances and Configurations in Molecules and Ions, The Chemical Society, London, 1958.Google Scholar
  36. 36.
    J. E. GRIFFITHS, J. Chem. Phys., 48, 278 (1968).Google Scholar
  37. 37.
    K. M. MACKAY and S. R. STOBART, Spectrochim. Acta, 26A, 373 (1970).Google Scholar
  38. 38.
    J. N. SHOOLERY, R. G. SHULMAN, and D. M. YOST, J. Chem. Phys., 19, 250 (1951).Google Scholar
  39. 39.
    W. BECK, W. BECKER, K. F. CHEW, W. DERBYSHIRE, N. LOGAN, D. M. REVITT, and D. B. SOWERBY, J. Chem. Soc Dalton, 245 (1972).Google Scholar
  40. 40.
    T. KANDA, Y. SAITO, and K. KAWAMURA, Bull. Chem. Soc. Japan, 35, 172 (1962).Google Scholar
  41. 41.
    R. A. FORMAN, J. Chem. Phys., 39, 2393 (1963).Google Scholar
  42. 42.
    D. HERBISON-EVANS and R. E. RICHARDS, Mol. Phys., 7, 515 (1964).Google Scholar
  43. 43.
    J. E. KENT and E. L. WAGNER, J. Chem. Phys., 44, 3530 (1966).Google Scholar
  44. 44.
    A. M. QURESHI, J. A. RIPMEESTER, and F. AUBKE, Canad. J. Chem., 47, 4247 (1969).Google Scholar
  45. 45.
    C. C. ADDISON and J. C. SHELDON, J. Chem. Soc., 3142 (1958).Google Scholar
  46. 46.
    R. A. OGG and J. D. RAY, J. Chem. Phys., 25, 1285 (1956).Google Scholar
  47. 47.
    C. C. ADDISON and N. LOGAN, in Developments in Inorganic Nitrogen Chemistry, Vol. 2 (C. B. COLBURN, Ed.), Elsevier, Amsterdam, in the press.Google Scholar
  48. 48.
    C. K. INGOLD and D. J. MILLEN, J. Chem. Soc., 2612 (1950).Google Scholar
  49. 49.
    E. BERL and H. H. SAENGER, Monatsh. Chem., 53, 1036 (1929).Google Scholar
  50. 50.
    W. H. LEE, in The Chemistry of Non-Aqueous Solvents, Vol. 2 (J. J. LAGOWSKI, Ed.), Academic Press, London and New York, 1967, p. 151.Google Scholar
  51. 51.
    G. E. MCGRAW, D. L. BERNITT, and I. C. HISATSUNE, Spectrochim. Acta, 23A, 25 (1967).Google Scholar
  52. 52.
    D. N. HENDRICKSON and W. L. JOLLY, Inorg. Chem., 8, 693 (1969).Google Scholar
  53. 53.
    J. MASON and W. van BRONSWIJK, J. Chem. Soc. A, 1763 (1970).Google Scholar
  54. 54.
    M. I. KHALIL and N. LOGAN, unpublished results.Google Scholar
  55. 55.
    W. L. JOLLY and N. LOGAN, unpublished results.Google Scholar
  56. 56.
    W. BECKER and W. BECK, Z. Naturforsch., 25b, 101 (1970).Google Scholar
  57. 57.
    D. MOY and A. R. YOUNG, J. Amer. Chem. Soc., 87, 1889 (1965).Google Scholar
  58. 58.
    C. A. WAMSER, W. B. FOX, B. SUKORNICK, J. R. HOLMES, B. B. STEWART, R. JUURIK, N. VANDERKOOI, and D. GOULD, Inorg. Chem., 8, 1249 (1969).Google Scholar
  59. 59.
    K. O. CHRISTE, J. P. GUERTIN, A. E. PAVLATH, and W. SAWODNY, Inorg. Chem., 6, 533 (1967).Google Scholar
  60. 60.
    W. E. TOLBERG, R. T. REWICK, R. S. STRINGHAM, and M. E. HILL, Inorg. Chem., 6, 1156 (1967).Google Scholar
  61. 61.
    E. L. MUETTERTIES and W. D. PHILLIPS, J. Amer. Chem. Soc., 81, 1084 (1959).Google Scholar
  62. 62.
    J. H. NOGGLE, J. D. BALDESCHWEILER, and C. B. COLBURN, J. Chem. Phys., 37, 182 (1962).Google Scholar
  63. 63.
    N. BARTLETT, J. PASSMORE, and E. J. WELLS, Chem. Comm., 213 (1966).Google Scholar
  64. 63a.
    W. B. FOX, J. S. MACKENZIE, E. R. MCCARTHY, J. R. HOLMES, R. F. STAHL, and R. JUURIK, Inorg. Chem., 7, 2064 (1968).Google Scholar
  65. 64.
    R. A. OGG and J. D. RAY, J. Chem. Phys., 25, 797 (1956).Google Scholar
  66. 65.
    F. S. FAWCETT and R. D. LIPSCOMB, J. Amer. Chem. Soc., 82, 1509 (1960).Google Scholar
  67. 66.
    J. MASON and W. van BRONSWIJK, Chem. Comm., 357 (1969).Google Scholar
  68. 67.
    A. R. YOUNG and D. MOY, Inorg. Chem., 6, 178 (1967).Google Scholar
  69. 68.
    J. K. RUFF, J. Amer. Chem. Soc., 87, 1140 (1965).Google Scholar
  70. 69.
    N. LOGAN and W. L. JOLLY, Inorg. Chem., 4, 1508 (1965).Google Scholar
  71. 70.
    J. NELSON and H. G. HEAL, J. Chem. Soc. A, 136 (1971).Google Scholar
  72. 71.
    J. MASON, J. Chem. Soc. A, 1567 (1969).Google Scholar
  73. 72.
    E. F. MOONEY and M. A. QASEEM, J. Inorg. Nuc. Chem., 30, 1439 (1968).Google Scholar
  74. 73.
    K. F. CHEW, W. DERBYSHIRE, M. F. LAPPERT and N. LOGAN, unpublished results.Google Scholar
  75. 74.
    R. A. OGG and J. D. RAY, J. Chem. Phys., 26, 1339 (1957).Google Scholar
  76. 75.
    M. SHPORER, G. RON, A. LOEWENSTEIN, and G. NAVON, Inorg. Chem., 4, 358 (1965).Google Scholar
  77. 76.
    O. W. HOWARTH, R. E. RICHARDS, and L. M. VENANZI, J. Chem. Soc., 3335 (1964).Google Scholar
  78. 77.
    B. B. MURRAY, U.S.A.E.C. Report DD-391 (1959).Google Scholar
  79. 78.
    B. M. FUNG and S. C. WEI, J. Mag. Res, 3, 1 (1970).Google Scholar
  80. 79.
    W. BECKER, W. BECK, and R. RIECK, Z. Naturforsch., 25b, 1332 (1970).Google Scholar
  81. 80.
    W. BECK and E. SCHUIERER, J. Organomet. Chem., 3, 55 (1965).Google Scholar
  82. 81.
    C. GRUNDMANN and J. M. DEAN, J. Org. Chem., 30, 2809 (1965).Google Scholar
  83. 82.
    A. PIDCOCK, R. E. RICHARDS, and L. M. VENANZI, Proc. Chem. Soc., 184 (1962).Google Scholar
  84. 83.
    W. P. FEHLHAMMER and L. F. DAHL, J. Amer. Chem. Soc., 94, 3377 (1972).Google Scholar
  85. 84.
    R. MASON, G. A. RUSHOLME, W. BECK, H. ENGELMANN, K. JOOS, B. LINDENBERG, and H. S. SMEDAL, Chem. Comm. 496 (1971).Google Scholar
  86. 85.
    R. ETTINGER, P. BLUME, P. C. LAUTERBUR, and A. PATTERSON, J. Chem. Phys., 33, 1597 (1960).Google Scholar
  87. 86.
    C. C. ADDISON, C. D. GARNER, N. LOGAN, and S. C. WALLWORK, Quart. Rev., 25, 289 (1971).Google Scholar
  88. 87.
    G. A. WEBB, in Annual Reports of N.M.R. Spectroscopy, Vol. 3 (E. F. MOONEY, Ed.), Academic Press, London and New York, 1970, p. 211.Google Scholar
  89. 88.
    G. N. LAMAR, J. Chem. Phys., 41, 2992 (1964).Google Scholar
  90. 89.
    G. N. LAMAR, J. Chem. Phys., 43, 235 (1965).Google Scholar
  91. 90.
    R. H. FISCHER and W. D. HORROCKS, Inorg. Chem., 7, 2659 (1968).Google Scholar
  92. 91.
    P. K. BURKERT, H. P. FRITZ, W. GRETNER, H. J. KELLER, and K. E. SCHWARZHANS, Inorg. Nucl. Chem. Letts., 4, 237 (1968).Google Scholar
  93. 92.
    H. P. FRITZ, W. GRETNER, H. J. KELLER, and K. E. SCHWARZHANS, Z. Naturforsch., 25b, 174 (1970).Google Scholar
  94. 93.
    D. G. BROWN and R. S. DRAGO, J. Amer. Chem. Soc., 92, 1871 (1970).Google Scholar
  95. 94.
    M. SHPORER, G. RON, A. LOEWENSTEIN, and G. NAVON, Inorg. Chem., 4, 361 (1965).Google Scholar
  96. 95.
    H. H. GLAESER, G. A. LO, H. W. DODGEN, and J. P. HUNT, Inorg. Chem., 4, 206 (1965).Google Scholar
  97. 96.
    A. L. van GEET, Inorg Chem., 7, 2026 (1968).Google Scholar
  98. 97.
    T. J. SWIFT and H. H. LO, J. Amer. Chem. Soc., 88, 2994 (1966).Google Scholar
  99. 98.
    B. B. WAYLAND and W. L. RICE, Inorg. Chem., 6, 2270 (1967).Google Scholar
  100. 99.
    W. L. RICE and B. B. WAYLAND, Inorg. Chem., 7, 1040 (1968).Google Scholar
  101. 100.
    M. ALEI, W. B. LEWIS, A. B. DENISON, and L. O. MORGAN, J. Chem. Phys., 47, 1062 (1967).Google Scholar
  102. 101.
    R. B. JORDAN, H. W. DODGEN, and J. P. HUNT, Inorg. Chem., 5, 1906 (1966).Google Scholar
  103. 102.
    A. H. ZELTMANN and L. O. MORGAN, Inorg. Chem., 9, 2522 (1970).Google Scholar
  104. 103.
    W. L. PURCELL and R. S. MARIANELLI, Inorg. Chem., 9, 1724 (1970).Google Scholar
  105. 104.
    G. D. HOWARD and R. S. MARIANELLI, Inorg. Chem., 9, 1738 (1970).Google Scholar
  106. 105.
    T. J. SWIFT and R. E. CONNICK, J. Chem. Phys., 37, 307 (1962).Google Scholar
  107. 106.
    R. A. FORMAN, J. Chem. Phys., 45, 1118 (1966).Google Scholar
  108. 107.
    B. A. WHITEHOUSE, J. D. RAY, and D. J. ROYER, J. Mag. Res., 1, 311 (1969).Google Scholar
  109. 108.
    C. C. ADDISON and B. M. GATEHOUSE, J. Chem. Soc., 613 (1960).Google Scholar
  110. 109.
    B. O. FIELD and C. J. HARDY, J. Chem. Soc., 4428 (1964).Google Scholar
  111. 110.
    R. G. SHULMAN and B. J. WYLUDA, J. Phys. Chem. Solids, 23, 166 (1962).Google Scholar
  112. 111.
    M. KUZNIETZ, J. Chem. Phys., 49, 3731 (1968).Google Scholar
  113. 112.
    M. KUZNIETZ, Phys. Rev., 180, 476 (1969).Google Scholar
  114. 113.
    Y. MASUDA and T. KANDA, J. Phys. Soc. Japan, 9, 82 (1954).Google Scholar
  115. 114.
    O. REDLICH and J. BIGELEISEN, J. Amer. Chem. Soc., 65, 1883 (1943).Google Scholar
  116. 115.
    J. V. ACRIVOS and K. S. PITZER, J. Phys. Chem., 66, 1693 (1962).Google Scholar
  117. 116.
    E. F. MOONEY, M. A. QASEEM, and P. H. WINSON, J. Chem. Soc. B, 224 (1968).Google Scholar
  118. 117.
    A. PICTET and E. KHOTINSKY, Ber. Dtsch. Chem. Ges., 40, 1163 (1907).Google Scholar
  119. 118.
    J. W. LEHMAN and B. M. FUNG, Inorg. Chem., 11, 214 (1972).Google Scholar
  120. 119.
    P. CLIFTON and L. PRATT, Proc Chem. Soc., 339 (1963).Google Scholar
  121. 120.
    W. L. JOLLY, A. D. HARRIS, and T. S. BRIGGS, Inorg. Chem., 4, 1064 (1965).Google Scholar
  122. 121.
    J. S. GRIFFITH and L. E. ORGEL, Trans. Faraday Soc., 53, 601 (1957).Google Scholar
  123. 122.
    R. FREEMAN, G. R. MURRAY, and R. E. RICHARDS, Proc. Roy. Soc. Ser. A, 242, 455 (1957).Google Scholar
  124. 123.
    W. BECK, W. BECKER, H. NöTH, and B. WRACKMEYER, Chem. Ber., 105, 2883 (1972).Google Scholar
  125. 124.
    H. BöHLAND and E. MüHLE, Z. Anorg. Allg. Chemie, 379, 273 (1970).Google Scholar
  126. 125.
    J. SADLEJ and Z. KEçKI, Roczniki Chem., 45, 445 (1971).Google Scholar
  127. 126.
    A. LOEWENSTEIN and G. RON, Inorg. Chem., 6, 1604 (1967).Google Scholar
  128. 127.
    A. LOEWENSTEIN and G. RON, Proceedings of the XIVth Colloque Ampere, Ljubljana, Yugoslavia, Sept. 1966.Google Scholar
  129. 128.
    R. MURRAY, S. F. LINCOLN, H. H. GLAESER, H. W. DODGEN, and J. P. HUNT, Inorg. Chem., 8, 554 (1969).Google Scholar
  130. 129.
    H. H. GLAESER, H. W. DODGEN, and J. P. HUNT, Inorg. Chem., 4, 1061 (1965).Google Scholar
  131. 130.
    M. GRANT, H. W. DODGEN, and J. P. HUNT, J. Amer. Chem. Soc., 91, 6318 (1969).Google Scholar
  132. 131.
    R. MURRAY, H. W. DODGEN, and J. P. HUNT, Inorg. Chem., 3, 1576 (1964).Google Scholar
  133. 132.
    R. J. WEST and S. F. LINCOLN, Austral. J. Chem., 24, 1169 (1971).Google Scholar
  134. 133.
    J. A. HAPPE and R. L. WARD, J. Chem. Phys., 39, 1211 (1963).Google Scholar
  135. 134.
    E. E. ZAEV and YU. N. MOLIN, Zh. Strukt. Khim., 7, 680 (1966).Google Scholar
  136. 135.
    YU. N. MOLIN, Zh. Strukt. Khim., 10, 932 (1969).Google Scholar
  137. 136.
    Yu. N. MOLIN, P. V. SCHASTNEV, and N. D. CHUVYLKIN, Zh. Strukt. Khim., 12, 403 (1971).Google Scholar
  138. 137.
    B. R. MCGARVEY and J. PEARLMAN, J. Mag. Res., 1, 178 (1969).Google Scholar
  139. 138.
    M. KUZNIETZ and D. O. van OSTENBURG, Phys. Rev (B), 2, 3453 (1970).Google Scholar
  140. 139.
    F. SEEL, V. HARTMANN, and W. GOMBLER, Z. Naturforsch., 27b, 325 (1972).Google Scholar

Copyright information

© Plenum Publishing Company Ltd 1973

Authors and Affiliations

  • N. Logan
    • 1
  1. 1.Department of ChemistryUniversity of NottinghamNottinghamEngland

Personalised recommendations