Advertisement

Abstract

Cassie perfume distilled from the flowers. Cassie absolute used in preparation of violet bouquets, extensively used in European perfumery. Cassie pomades manufactured in Uttar Pradesh and the Punjab. Pods contain 23% tannin, a glucoside of ellagic acid, and are used for tanning leather. Bark also used for tanning and dyeing leather in combination with iron ores and salts. In Bengal and West Indies pods used for a black leather dye. Gummy substance from pods used in Java as cement for broken crockery. Gum exuding from trunk considered superior to gum arabic in arts. In Ivory Coast trees used as ingredient in arrow poison; elsewhere used as fences and to check erosion. Wood is hard and durable underground, used for wooden plows and for pegs. Often planted as an ornamental.

Figure 1.

Acacia farnesiana (L.) Willd.

Keywords

Cover Crop White Clover Lima Bean Common Vetch Adzuki Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dougherty, J. L., 1946, Acacia negra industry in Rio Grande do Sul, Agric. Am. 6(9): 139–141, 147, illus.Google Scholar
  2. Heiberg-Iurgensen, K., 1967, A contribution to the economics of the growing of black wattle Acacia mearnsii de Wild. in Natal, Ph.D. thesis, University of Natal, Pietermaritzburg.Google Scholar
  3. Olembo, T. W., 1972, Phoma herbarum Westend.: A pathogen of Acacia mearnsii de Wild. in Kenya, East Afr. Agric. For. J. Oct. 1972:201–206.Google Scholar
  4. Saayman, H. M., and Roux, D. G., 1975, The origins of tannins and flavonoids in black-wattle barks and heartwoods, and their associated “non-tannin” components, Biochem. J. 97: 794.Google Scholar
  5. Schonau, A. P. G., 1969, A site evaluation study in black wattle (Acacia mearnsii de Wild), Ann. Univ. Stellenbosch Ser. A 44(No 2).Google Scholar
  6. Schonau, A. P. G., 1973, Height growth and site index curves for Acacia mearnsii on the Uasin Gishu Plateau of Kenya, Commonw. For. Rev. 52(3): 245–253.Google Scholar
  7. Sherry, S. P., 1971, The Black Wattle (Acacia mearnsii de Wild.), University of Natal Press, Pietermaritzburg, 402 pp.Google Scholar
  8. Stubbings, J. A., and Schonau, A. P. G., 1972, Density and air-drying rate of the timber of black wattle (Acacia mearnsii), Univ. Natal Wattle Res. Inst., Rep. 25:36–38.Google Scholar

Reference

  1. Theresa, Y. M., and Nayudamma, Y., 1972, A comparative study of Babul pod tannins of Indian (Acacia arabica) and Sudanese (Acacia nilotica) origin, Leather Sci. (Madras) 19:341–348.Google Scholar

Reference

  1. Cheema, M. S. Z. A., and Qadir, S. A., Autecology of Acacia Senegal (L.) Willd., Vegetatio 27(1–3): 131–162.Google Scholar

Reference

  1. Martin, T. J., and Torssell, W. R., 1974, Buffalo clover [Alysicarpus vaginalis (L.) DC]: A pasture legume in Northern Australia, J. Aust. Inst. Agric. Sci. 40(3):232–234.Google Scholar

Reference

  1. Sterk, A. A., 1975, Demographic studies of Anthyllis vulneraria L. in the Netherlands, Acta Bot. Neerl. 24(3/4):315–337.Google Scholar

References

  1. Wilson, C. T. (ed.), 1973, Peanuts—Culture and Uses, American Peanut Research and Education Association. Stillwater, Oklahoma, 684 pp.Google Scholar
  2. Woodroof, J. G. (ed.), 1973, Peanuts: Production, Processing, Products. Avi Publishing, Westport, Conn., 330 pp.Google Scholar

References

  1. Johnston, A., Smoliak, S., Hanna, M. R., and Hironaka, R., 1975, Cicer Milkvetch for Western Canada, Agriculture Canada Publication 1536, 16 pp.Google Scholar
  2. Smoliak, S., Johnston, A., and Hanna, M. R., 1972, Germination and seedling growth of alfalfa, sainfoin and cicer milk-vetch, Can. J. Plant Sci. 52:757–762.CrossRefGoogle Scholar
  3. Stroh, J. R., Carleton, A. E., and Seamands, W. J., 1972, Management of Lutana cicer milkvetch for hay, pasture, seed, and conservation uses, Mont. Agric. Exp. Stn., Bull. 666:16 pp.Google Scholar
  4. Townsend, C. E., 1974, Selection for seedling vigor in Astragalus cicer L., Agron. J. 66:241–245.CrossRefGoogle Scholar
  5. Townsend, C. E., 1977, Recurrent selection for high seed weight in cicer milkvetch, Crop Sci. 17:473–476.CrossRefGoogle Scholar
  6. Townsend, C. E., Christensen, D. K., and Dotzenko, A. D., 1978, Yield, quality, and persistence of cicer milkvetch as influenced by cutting frequency, Agron. J. 70:109–113.CrossRefGoogle Scholar

References

  1. Fern, C. M., 1959, in: Industrial Gums (R. L. Whittier and J. N. BeMiller, eds.), pp. 511–515, Academic, New York.Google Scholar
  2. Gentry, H. S., 1957, Gum tragacanth in Iran, Econ. Bot. 11(1): 40–63.CrossRefGoogle Scholar

Reference

  1. Harms, H., 1911, Baphia spp. in Cameroons, Notizbl. App. 21(2):66.Google Scholar

Reference

  1. Engelter, C., and Wehmeyer, A. S., 1970, Fatty acid composition of oils of some edible seeds of wild plants (Bauhinia esculenta), J. Agric. Food Chem. 18(l):25–26.PubMedCrossRefGoogle Scholar

References

  1. Jose de Souza, B., 1939, Opoa-brazil na historia nacional, Brasiliana Ser. V 162:1–267.Google Scholar
  2. Jose de Souza, B., 1941, Sao Paulo, Trop. Woods 67:38–39.Google Scholar

Reference

  1. Khin Khin Thi, 1971, The Burmese Caesalpiniaceae, Union Burma J. Life Sci. 4:405.Google Scholar

Reference

  1. Sprague, T. A., 1931, The botanical name of tara, Kew Bull. Misc. Inform. 2:91–96Google Scholar
  2. Sprague, T. A., 1931, The botanical name of tara, Trop. Woods 26:25.Google Scholar

References

  1. Cross, L. A., and Thomas, S. M., 1968, Pigeonpea 1965–1967, Texaco Food Crops Demonstration Farm Bulletin No. 5.Google Scholar
  2. De, D. N., 1974, Pigeon pea, in: Evolutionary Studies in World Crops, Diversity and Change in the Indian Subcontinent (Sir J. Hutchinson, ed.), pp. 79–87, Cambridge University Press.Google Scholar
  3. Gooding, H. J., 1962, The agronomic aspects of pigeon pea, Field Crop Abstr. 15:1–5.Google Scholar
  4. Hammerton, J. L., 1971, A spacing/planting date trial with Cajanus cajan (L.) Millsp., Trop. Agric. 48(4):341–350.Google Scholar
  5. Henderson, T. H., 1965, Some aspects of pigeon pea farming in Trinidad, Occ. Ser. Dep. Agric. Econ. Farm Mgmt., University of West Indies, No. 3.Google Scholar
  6. Khan, T. N., and Rachie, K. O., 1972, Preliminary evaluation and utilization of pigeon pea germplasm in Uganda, East Afr. Agric. For. J. 38(l):78–82.Google Scholar
  7. Krauss, F. G., 1921, The pigeon pea (Cajanus indicus): Its culture and utilization in Hawaii, Hawaii Agric. Exp. Stn., Bull. 46:1–23, Washington, D.C.Google Scholar
  8. Morton, J. F., 1976, The pigeon pea (Cajanus cajan Millsp.), a high protein tropical bush legume, Hortscience 11(1): 11–19.Google Scholar
  9. Mukherjee, D., 1960, Studies on spacing of Cajanus cajan (L.) Millsp., Indian J. Agric. Sci. 30:177–184.Google Scholar
  10. Riolliano, A., Perez, A., and Ramos, C., 1962, Effects of planting date, variety, and plant population on the flowering and yield of pigeon pea (Cajanus cajan L.), J. Agric. Univ. P.R. 46:127–134.Google Scholar
  11. Thevasagayam, E. E., and Canagasingham, L. S. C., 1960, Some observations on the insect pests of dhal (Cajanus cajan) and their control, Trop. Agric. 116(4):287–298.Google Scholar

Reference

  1. Gowda, H. S. G., 1974, Forage legume inoculation and grass-legume association studies, Mysore Agric. J. 9:515–516.Google Scholar

References

  1. Dey, Dipali, 1970, Cytological studies on Canavalia ensiformis and Dolichos lablab, Indian Biol., 2(2):54–59, illus.Google Scholar
  2. Piper, C. V., 1925, The American species of Canavalia and Wenderothia, Contrib. U.S. Nat. Herb. 20:555–585.Google Scholar
  3. Sauer, J. J., 1964, Revision of Canavalia, Brittonia 16:106–181.CrossRefGoogle Scholar

Reference

  1. Allen, E. K., and Allen, O. N., 1976, The nodulation profile of the genus Cassia, in: Symbiotic Nitrogen Fixation in Plants (P. S. Nutman, ed.), pp. 113–121, International Biology Program No. 7.Google Scholar

Reference

  1. Niranjan, G. S., and Gupta, P. C., 1973, Chemical constituents of the flowers of Cassia occidentalis, Planta 23(3):298–300.Google Scholar

References

  1. Anonymous, 1972, Senna leaves, Chem. Market Res. July 3, 1972:22.Google Scholar
  2. Ayoub, A. T., 1975, Sodium and cation accumulation by senna (Cassia acutifolia), J. Exp. Bot. 26:891–896.CrossRefGoogle Scholar
  3. Ayoub, A. T., 1977, Some primary factors of salt tolerance in senna (Cassia acutifolia), J. Exp. Bot. 28:484–492.CrossRefGoogle Scholar
  4. Fairbairn, J. W., and Shrestha, A. B., 1967, The taxonomic validity of Cassia acutifolia and C. angustifolia, Lloydia 30(l):67–72.Google Scholar

References

  1. Ahmet, M., and Vardar, Y., 1975, Chemical composition of carob seed, Phyton 33(l):63–64.Google Scholar
  2. Binder, R. J., et al., 1959, Carob varieties and composition, Food Technol. 3:213–216.Google Scholar
  3. Charalambous, J. (ed.), 1966, The composition and uses of carob bean, Cyprus Agric. Res. Inst., Nicosia.Google Scholar
  4. Coit, J. E., 1962, Carob varieties, Fruit Var. Hort. J. 15:75–77.Google Scholar
  5. Coit, J. E., 1951, Carob or St. John’s Bread, Econ. Bot. 5:82–96.CrossRefGoogle Scholar
  6. Condit, I. J., The carob in California, Calif. Exp. Stn., Bull. 309.Google Scholar
  7. Davies, W. N. L., 1970, The carob tree and its importance in the economy of Cyprus, Econ. Bot. 24:460–470.CrossRefGoogle Scholar
  8. Orphanos, P. I., and Papaconstantinou, J., 1969, The carob varieties of Cyprus, Cyprus Agric. Res. Inst., Tech. Bull., No. 5, Nicosia, Government of Palestine, Sept.Google Scholar

References

  1. El Baradi, T. A., 1977, Pulses 2.—Chickpeas, Abstr. Trop. Agric. 3(3):9–18.Google Scholar
  2. Hulse, J. H., 1976, Problems of nutritional quality of pigeonpea and chickpea and prospects of research, in: ICRISAT, 1976, International Workshop on Grain Legumes (Proceedings), January 13–16, 1975, pp. 189–207, Hyderabad, India.Google Scholar
  3. Maesen, L. J. G. van der, 1972, Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arie-tinum L.), its ecology and cultivation, Commun. Agric. Univ. Wageningen 72–10:342.Google Scholar
  4. Singh, K. B., and Auckland, A. K., 1975, Chickpea breeding at ICRISAT, in: ICRISAT, 1975, International Workshop on Grain Legumes (Proceedings), pp. 3–17, Hyderabad, India.Google Scholar

References

  1. Crowder, L. V., 1974, Clitoria ternatea (L.) Due. as a forage and cover crop: A review, Niger. Agric. J. 11(1):61–65.Google Scholar
  2. Matos, E., and de la Torre, R., 1971, Trials with five populations of Clitoria ternatea L. Rev. Cub. Ciene. Agric. 4:217–221 (as cited by Bogdan, 1977, not seen).Google Scholar

References

  1. Al-Tikrity, W., McKee, G. W., Clarke, W. W., Peiffer, R. A., and Risius, M. L., 1974, Seed yield of Coronilla varia L., Agron. J. 66:467–468.CrossRefGoogle Scholar
  2. Anderson, E. J., 1959, Pollination of Crownvetch, Glean. Bee Cult. 87:590–593.Google Scholar
  3. Hawk, V.B., 1962, ‘Emerald’ crownvetch—A new legume fills many needs for conservation plans, Iowa Soil Water 6(3): 10.Google Scholar
  4. Hawk, V. B., and Scholl, J. M., 1961, Seed treatment aids crownvetch seedings, Crops Soils 14(6): 19.Google Scholar
  5. Kenson, P. R., 1963, Crownvetch—A soil conserving legume and a potential pasture and hay plant, U.S. Dep. Agric., Agric. Res. Serv. 34–53:1–9.Google Scholar
  6. McKee, G. W., 1962, ‘Penngift’ crownvetch (Reg. No. 2), Crop Sci. 2:356.CrossRefGoogle Scholar
  7. Uhrova, A., 1935, Revision der Gattung Coronilla L. Bot., Centralbl. Beihefte 53:174.Google Scholar

References

  1. Imbamba, S. K., 1973, Leaf protein content of some Kenya vegetables, East Afr. Agric. For. J. 38(3):246–251.Google Scholar
  2. Miller, R. H., 1967, Crotalaria seed morphology, anatomy and identification, U.S. Dep. Agric., Agric. Res. Serv., Tech. Bull. 1373:1–73, illus.Google Scholar
  3. Tookey, H. L., Pfeifer, V. F., and Martin, C. R., 1963, Gums separated from Crotalaria intermedia and other leguminous seeds by dry milling, Agric. Food Chem. 11(4):317–321.CrossRefGoogle Scholar

References

  1. Chaudhai, S. D., 1950, Sunnhemp in East Pakistan, Agric. Pak. 1:156–160.Google Scholar
  2. Fox, D. H., 1954, Sunnhemp fiber production, Rhod. Agric. J. 42:6–13.Google Scholar
  3. Howard, A., and Howard, G. C., 1910, Studies in Indian fibre plants. I. On two varieties of Sann (Crotalaria juncea), Mem. Dep. Agric. india, Bot. Ser. 3(3).Google Scholar
  4. Montgomery, B., 1954, The bast fibers, in: Matthew’s Textile Fibers, 6th ed. (Herbert R. Mauersberger, ed.), Wiley, New York.Google Scholar
  5. Paul, W. R. C., and Chelvanayagam, A. V., 1936, Sunnhemp in the Jaffna Peninsula, Trop. Agric. 86(1):23–27.Google Scholar
  6. Singh, B. N., and Singh, S. N., 1936, Analysis of Crotalaria juncea with special reference to its use in green manure and fiber production, J. Am. Soc. Agron. 28:216–227.CrossRefGoogle Scholar
  7. White, G. A., and Haun, J. R., 1965, Growing Crotalaria juncea, a multipurpose legume, for paper pulp, Econ. Bot. 19(2): 175–183.CrossRefGoogle Scholar

Reference

  1. Senn, H. A., 1939, North American species of Crotalaria, Rhodora 41:326.Google Scholar

References

  1. Hodges, R. J., et al., 1970, Keys to profitable guar production. Fact sheet, Texas A. & M. Univ. Agric. Ext. Serv. L-907:1–4, College Station, Texas.Google Scholar
  2. Hymowitz, T., 1972, The transdomestication concept as applied to guar, Econ. Bot. 26:49–60.CrossRefGoogle Scholar
  3. Rowland, B. W., 1945, The use of guar in paper manufacture, Chemurgic Dig. 4(23):369Google Scholar
  4. 372–376, illus.Google Scholar
  5. Shelton, G., 1956, Guar, a double purpose legume, Soil Water June: 14–15.Google Scholar

References

  1. Jones, H. A., and Smith, C. M., 1936, Derris and cube, approximate chemical evaluation of their toxicity, Soap June: 113–115.Google Scholar
  2. Moore, R. H., 1943, Derris culture in Puerto Rico, P.R. Ext. Stn. 24:1–17, illus. Mayaguez, P.R.Google Scholar
  3. Moreau, R. E., 1944, Derris agronomy: An annotated bibliography and a critical review, East Afr. Agric. J. 10(2):75–82.Google Scholar
  4. Roark, R. C., 1932, A digest of the literature of Derris (Deguelia) species used in insecticides, 1747–1931, U.S. Dep. Agric., Misc. Publ. 120:1–86.Google Scholar
  5. Sievers, A. F., 1940, The Production and Marketing of Derris Root, U.S. Department of Agriculture, Division of Drugs and Related Plants, Washington, D.C., 23 pp.Google Scholar
  6. White, D. B., 1945, Propagating Derris by cuttings, Agric. Am. 5(8): 154–156, illus.Google Scholar

References

  1. Georgi, C. D. V., 1939, Variation in toxic content of roots of Denis malaccensis var. sarawakensis with increase in age of plant, Malay. Agric. J. 27(4): 134–140.Google Scholar
  2. Georgi, C. D. V., and Teik, G. L., 1938, Further selection experiments with Derris malaccensis, Malay. Agric. J. 26:4–17.Google Scholar

References

  1. Hutton, E. M. and Coote, J. N., 1972, Genetic variation in nodulating ability in “Greenleaf” Desmodium, J. Aust. Inst. Agric. Sci. 38:68–69.Google Scholar
  2. Imrie, B. C., 1973, Variation in Desmodium intortum, a preliminary study, Trop. Grassl. 7(3):305–311.Google Scholar
  3. Jones, R. J., 1973, The effect of frequency and severity of cutting on yield and persistence of Desmodium intortum cultivar “Greenleaf” in a subtropical environment, Aust. J. Exp. Agric. Anim. Husb. 13(61): 171–177.CrossRefGoogle Scholar
  4. Mills, P. F., 1968, Kuru vine (Desmodium intortum), Rhodes. Agric. J. 65:59.Google Scholar
  5. Rotar, P. P., and Chow, K. H., 1971, Morphological variation and interspecific hybridizing among Desmodium intortum, D. sandwicense and D. uncinatum, Hawaii Agric. Exp. Stn., Tech. Bull. 82:28 pp.Google Scholar
  6. Vallis, I., and Jones, R. J., 1973, Net mineralization of nitrogen in leaves and leaf litter of Desmodium intortum and Phaseolus atropurpureus mixed with soil, Soil Biol. Biochem. 5:391–398.CrossRefGoogle Scholar
  7. Younge, O. R., Plunknett, D. L., and Rotar, P. P., 1974, Culture and yield performance of Desmodium intortum and D. canum in Hawaii, Hawaii Agric. Exp. Stn., Tech. Bull. 59.Google Scholar

References

  1. Anonymous, 1947, Tonka beans, Econ. Bot. 1:175 [repr.: 1946, Braz. Bull. 3(58): 1.]Google Scholar
  2. Anonymous, 1977, Combined oral furapromidium and rectal Dipteryx in Schistosomiasis japonica, Chin. Med. J. 3:103.Google Scholar
  3. Ciferri, R., 1927, Qualche notizia sulla “Fava Tonka” (Coumarouna punctata Blake), Inst. Agric. Colon. Ital., Florence, Italy, 16 pp. illus.Google Scholar
  4. Hayashi, T., and Thomson, R. H., 1974, Isoflavones from Dipteryx odorata, Phytochemistry 13:1943–1946.CrossRefGoogle Scholar
  5. Pound, F. J., 1938, History and cultivation of the tonka bean (Dipteryx odorata) with analysis of Trinidad, Venezuela and Brazilian samples, Trop. Agric. (Trinidad) 15:4–9Google Scholar

References

  1. Asian Vegetable Research and Development Center, 1976, Soybean Report’75, Shanhua, Taiwan, Republic of China, 68 pp.Google Scholar
  2. Caldwell, B. E., Howell, R. W., Judd, R. W., Johnson, H. W. (eds.), 1973, Soybeans: Improvement, Production, and Uses, Argonomy Series No. 16, American Society of Agronomy, Inc., Madison, Wisc., 681 pp.Google Scholar
  3. Hill, L. D. (ed.), 1976, World Soybean Research, The Interstate Printers and Publishers, Inc., Danville, Ill., 1073 pp.Google Scholar
  4. Johnson, H. W., et al., 1967, Growing soybeans, U.S. Dep. Agric., Farmers Bull. 2129:1–10, illus.Google Scholar
  5. National Soybean Corp Improvement Council, 1966 (rev. ed.), Soybean Farming, 34 pp., illus., Urbana, Ill.Google Scholar
  6. Strand, E. G., 1948, Soybeans in American farming, U.S. Dep. Agric. Tech. Bull. 966:1–66, illus.Google Scholar

References

  1. Hermann, F. J., 1962, A revision of the genus Glycine and its immediate allies, U.S. Dep. Agric. Tech. Bull. 1268:1–82, illus.Google Scholar
  2. Hymowitz, T., 1970, On the domestication of the soybean, Econ. Bot. 23:408–421.CrossRefGoogle Scholar
  3. Lima, C. R., and Santo, S. M., 1972, Nutritive value of hays from different growth stages of perennial soybean (Glycine javanica), Resq. Agropec. Bras. Ser. Zootec. 7:59–62.Google Scholar
  4. Verdcourt, B., 1966, A proposal concerning Glycine L., Taxonomy 15:34–36.CrossRefGoogle Scholar

References

  1. Edmonds, P., 1968, Licorice: Primitive harvesting, modern manufacture, Tobacco Dec. 27, 1968.Google Scholar
  2. Houseman, P. A., 1944, Licorice root as a chemurgic crop for America, Chem Dig. 3(6):84–88, illus.Google Scholar
  3. Houseman, P. A., and Lacy, H. T., 1929, The licorice root in industry, Ind. Eng. Oct.:915–917, illus.Google Scholar
  4. Molyneux, F., 1975, Licorice production and processing, Food Technol. Aust. June:231–234.Google Scholar
  5. Penick Research Dept., 1958, Glycyrrhiza and Its Derivatives (A Bibliography), 16 pp., S. B. Penick, New York.Google Scholar
  6. Walker, W. W., 1952, Licorice: Dark mystery of industry, Atlantic Monthly Nov.:23–26.Google Scholar

Reference

  1. Come, D., and Semodeni, A., 1973, Gases released from seed coats during imbibition. I. Application to the study of the hardness of Hedysarum coronarium L. seeds. (Fr), Physiol. Veg. 11:171–177.Google Scholar

References

  1. Elmstrom, G. W., 1976, Napropamide for weed control in watermelon, Proc. 28th Ann. Meet. South. Weed Sci.Soc., p. 173.Google Scholar
  2. Rhoades, H. L., 1976, Effect of Indigofera hirsuta on Belono-laimus longicaudatus, Meloidogyne incognita, and M. javanica and subsequent crop yields, Plant Dis. Rep. 60(5):384–386.Google Scholar
  3. Wallace, A. T., 1957, Hairy indigo, a summer legume for Florida, Fla. Agric. Exp. Stn., Circ. S-98. Google Scholar

Reference

  1. CSIRO, 1972, Tropical pastures, Annual Report 1971–1972. Google Scholar

Reference

  1. Ghosh, A. K., 1944, Rise and decay of the indigo industry, Sci Cult. 9(11):487–493;Google Scholar

Reference

  1. 9(12):537Google Scholar
  2. Ghosh, A. K., 1944, Rise and decay of the indigo industry, Sci Cult. 9(12)542.Google Scholar

References

  1. Draper, W. J., 1967, Dolichos lablab—An alternative green manure crop, Queensl. Bur. Sugar Exp. Stn., Cane Growers Q. Bull. 30(4): 119.Google Scholar
  2. Patil, G. D., 1958, Anthesis and pollination in Field Wal (Dolichos lablab Rox.), Poona Agric. Mag. 49:95–102.Google Scholar
  3. Piper, C. V., and Morse, W. J., 1915, The bonavist, Lablab or Hyacinth Bean, U.S. Dep. Agric., Bull. 318:1–15.Google Scholar
  4. Rangawami Ayyangar, G. N., and Krishman, K. Kuhni, 1935, Studies in Dolichos lablab (Roxb.) L. The Indian field and garden bean, II, Proc. Ind. Acad. Sci. 2(1):74–79.Google Scholar

Reference

  1. Henson, P. E., 1953, Roughpea, Lathyrus hirsutus, U.S. Dep. Agric., Soils Agric. Eng. April:2 pp. (mimeo).Google Scholar

Reference

  1. Mozheiko, A. M., Nasonor, Y. F., and Kuzovenko, N. P., 1976, Effect of irrigation with sewage water on yield and quality of peavine [Russ.], Tr. Khar’k. Skh. Inst.: Ref. Zhur. 1.55.674: 1 975 205 75–82 (through CAB Field Crop Abst.).Google Scholar

References

  1. Ayoub, A. T., 1976, Salt tolerance of lentil (Lens escalenta), J. Hortic. Sci. 52(1):163–168.Google Scholar
  2. Evans, L. E., and Slinkard, A. E., 1975, Production of pulse crops in Canada, in: Oilseed and Pulse Crops in Canada (J. T. Harapiok, ed), Chap. 12, W. Coop, Fertilizers, Calgary, Alberta.Google Scholar
  3. Slinkard, A. E. (ed.), 1975–1977, LENS (Lentil Experimental News Service), Vols. II—IV (annual newsletter).Google Scholar
  4. Williams, J. T., Sanchez, A. M. C., and Carasco, J. F., 1975, Studies on lentils and their variation. II. Protein assessment for breeding programmes and genetic conservation, Sabrao J. 7(1):27–36.Google Scholar
  5. Zohary, D., 1973, The wild progenitor and the place of origin of the cultivated lentil: Lens culinaris, Econ. Bot. 26(4):326–332.CrossRefGoogle Scholar

References

  1. Bailey, R. Y., 1951, Sericea in conservation farming, U.S. Dep. Agric., Farmers Bull. 2033.Google Scholar
  2. Dodd, D. R., Thatcher, L. E., and Willard, C. J., 1948, The lespedezas in Ohio agriculture, Bull. Agric. Ext. Serv., Ohio State Univ. 300:1–8, illus.Google Scholar
  3. Donnelly, E. D., and Anthony, W. B., 1973, Relationship of sericea lespedeza leaf and stem tannin to forage quality, Agron. J. 65:933–994.CrossRefGoogle Scholar
  4. Hadlaway, C. W., et al., 1936, Korean lespedeza and sericea lespedeza hays for producing milk, Va. Agric. Exp. Stn., Bull. 305.Google Scholar
  5. Hawkins, G. E., 1955, Composition and digestibility of lespedeza sericea hay and alfalfa hay plus gallotannin, J. Dairy Sci. 38:237–243.CrossRefGoogle Scholar
  6. Henson, P. R., 1957, The lespedezas, Adv. Agron. 9:113–157.CrossRefGoogle Scholar
  7. Hoveland, C. S., and Anthony, W. B., 1974, Cutting management of sericea lespedeza for forage and seed, Agron. J. 66(2): 189–191.CrossRefGoogle Scholar
  8. Minton, N. A., and Donnelly, E. D., 1972, Nematode-resistant sericea being developed, Lespedeza cuneata, Ga. Agric. Res. 14(3):7–9.Google Scholar

References

  1. Anderson, K. L., 1949, Lespedeza in Kansas, (Contrib. No. 396, Dep. Agron.), Agric. Exp. Stn., Kansas State Coll. Agric. Appl. Sci., 251:1–19, illus., Manhattan.Google Scholar
  2. Henson, P. R., and Cope, W. A., 1969, Annual lespedezas: Culture and use, U.S. Dep. Agric., Farmers Bull. 2113:1–16, illus.Google Scholar

References

  1. National Academy of Science, 1977, Leucaena, promising forage and tree crop for the tropics, Washington, DC., 115 pp.Google Scholar
  2. Oakes, A. J., 1968, Leucaena leucocephala: Description, culture, utilization, Adv. Front. Plant Sci. 20:1–114.Google Scholar

References

  1. Cultivation of Lonchocarpus, 1938, Bull. Imperial Inst., London 36(2): 179–185.Google Scholar
  2. Hermann, F. J., 1947, The Amazonian varieties of Lonchocarpus nicou a rotenone-yielding plant, J. Wash. Acad. Sci. 37(4): 111–113, illus.PubMedGoogle Scholar
  3. Higbee, E. C., 1948, Lonchocarpus, Derris and Pyrethrum: Cultivation and sources of supply, U.S. Dep. Agric., Misc. Publ. 650:1–16, illus.Google Scholar
  4. Krukoff, B. A., and Smith, A. C, 1937, Rotenone-yielding plants of South America, Am. J. Bot. 24:576–587.CrossRefGoogle Scholar
  5. Legros, J., 1939, Some Lonchocarpus species, rotenone-yielding plants of South America, Int. Rev. Agric. Jan.-Feb.: 11T–61T.Google Scholar
  6. Roark, R. C., 1936, Lonchocarpus species (Barbasco, Cube, Haiari, Nekoe, and Timbo) used as insecticides, U.S. Dep. Agric., Bur. Ent. Pl. Q. Publ. E-367:1–133.Google Scholar
  7. Roark, R. C., 1938, Lonchocarpus (Barbasco, Cube and Tim-bo)—A review of recent literature, U.S. Dep. Agric., Bur. Ent. Pl. Q. Publ. E-453:1–174.Google Scholar
  8. Wylie, K. H., 1948, World production, supply and price of rotenone, U.S. Dep. Agric., For. Agric Rep. 28:1–5.Google Scholar

References

  1. Currier, W. W., and Strobel, G. A., 1977, Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots, Science 196:434–435.PubMedCrossRefGoogle Scholar
  2. Henson, P. R., and Schoth, H. A., 1962, The Trefoils—Adaptation and culture, U.S. Dep. Agric., Agric. Handb. 223:1–16, illus.Google Scholar
  3. Mac Donald, H. A., 1946, Birdsfoot Trefoil (Lotus corniculatus L.). Its Characteristics and Potentials as a Forage Legume, Memoir 261, Cornell University Agricultural Experiment Station, Ithaca, N.Y.Google Scholar
  4. Seaney, R. R., and Henson, P. R., 1970, Birdsfoot Trefoil, Adv. Agron. 22:119–157.CrossRefGoogle Scholar
  5. U.S. Department of Agriculture, Agricultural Research Service, 1967, Trefoil production for pasture and hay, Farmers Bull. 2191:1–16, illus.Google Scholar

References

  1. Dukhanin, A. A., 1975, Root system of lupin and its importance as a green manure. Selektsiyz, Semenovodstvo P Priemy Vozdelyvaniya Lyupina: Orel, USSR Ref. Zh. 9. 55. 652:79–86 [Russian] (orig. not seen).Google Scholar
  2. Gladstones, J. S., 1967, ‘Uniwhite’—A new lupin variety, W. Aust. Dep. Agric., Bull. 3502:2–6, illus.Google Scholar
  3. Gladstones, J. S., 1970, Lupins as crop plants, Field Crop Abstr. 23(2): 123–148.Google Scholar
  4. Greenwood, E. A. N., Farrington, P., and Beresford, J. D., 1975, Characteristics of the canopy, root system, and grain yield of a crop of Lupinus angustifolius cv Unicrop, Aust. J. Agric. Res. 26:497–510.CrossRefGoogle Scholar
  5. Gross, U., Reyes, J., Gross, R., and Baer, E. von, 1976, Die Lupine, ein Beitrag zur Nahrungsversorgung in den Anden. III. Die Akzeptabilitaet des Mehles von Lupinus albus, Z. fur Ernaehrungswiss. 15(4):396–402 (orig. not seen).CrossRefGoogle Scholar
  6. Henson, P. R., and Hollowell, E. A., 1960, Winter annual legumes for the South, U.S. Dep. Agric., Farmers Bull. 2146:3–12, 17.Google Scholar
  7. Henson, P. R., and Stephens, J. L., 1958, Lupines: Culture and use, U.S. Dep. Agric., Farmers Bull. 2114:1–12.Google Scholar
  8. Naimark, L. B., and Brantsevich, S. F., 1974, Effect of phosphorus-potassium fertilizers on yield of yellow lupin. Sbornik Nauchnykh Trudov, Belorusskay a Sel’-Skokhozyaistvennaya Akademiya: Ref. Zhur. 6. 55. 622.: 1974, 133:58–71 [Russian] (orig. not seen).Google Scholar
  9. Rahman, M. S., and Gladstones, J. S., 1974, Effects of temperature and photoperiod on flowering and yield components of Lupin genotypes in the field, Aust. J. Exp. Agric. Anim. Husb. 14(67):205–213.CrossRefGoogle Scholar
  10. Weimer, J. L., 1952, Diseases of cultivated lupines in the Southeast, U.S. Dep. Agric., Farmers Bull. 2053:1–18.Google Scholar

References

  1. Ford, C. W., 1971, Flavonoids from Phaseolus atropurpureus, Phytochemistry 10:2807.CrossRefGoogle Scholar
  2. Ford, C. W., 1972a, Arabinogalactan from Phaseolus atropurpureus leaves, Phytochemistry 11:2559.CrossRefGoogle Scholar
  3. Ford, C. W., 1972b, Oligosaccharides from Phaseolus atropurpureus, Aust. J. Chem. 25:889.CrossRefGoogle Scholar
  4. Hutton, E. M., 1962, Siratro—A tropical legume bred from Phaseolus atropurpureus, Aust. J. Exp. Agric. Anim. Husb. 2:117–125.CrossRefGoogle Scholar
  5. Hutton, E. M., and Beall, L. B., 1977, Breeding of Macroptilium atropurpureum, Trop. Grassl. 11:15–31.Google Scholar
  6. Jones, R. J., 1967, Effects of close cutting and nitrogen fertilization on growth of a siratro (Phaseolus atropurpureus) pasture at Samford, south-eastern Queensland, Aust. J. Exp. Agric. Anim. Husb. 7:157–161.CrossRefGoogle Scholar
  7. Jones, R. J., and Jones, R. M., 1977, The ecology of siratro-based pastures, in: Plant Relations in Pastures (J. R. Wilson, ed.), CSIRO, Melbourne.Google Scholar
  8. Kretschmer, A. E., Jr., 1966, Four years’ results with siratro (Phaseolus atropurpureus DC.) in south Florida, Soil Crop Sci. Soc. Fla., Proc. 26:238–245.Google Scholar
  9. Kretschmer, A. E., Jr., 1972, Siratro (Phaseolus atropurpureus DC.) a summer-growing perennial pasture legume for Central and South Florida, Fla. Agric. Exp. Stn., Circ. S-214:1–21, illus.Google Scholar
  10. Minson, D. J., and Milford, R., 1966, The energy values and nutritive value indices of Digitaria decumbens, Sorghum almum, and Phaseolus atropurpureus, Aust. J. Agric. Res. 17:411–423.CrossRefGoogle Scholar
  11. Shaw, N. H., and Whiteman, P. C., 1977, Siratro—A success story in breeding a tropical pasture legume, Trop. Grassl. 11(1):7–14.Google Scholar
  12. Vallis, I., and Jones, R. J., 1973, New mineralization of nitrogen in leaves and leaf litter of Desmodium intortum and Phaseolus atropurpureus mixed with soil, Soil Biol. Biochem. 5(4):391–398.CrossRefGoogle Scholar

References

  1. Chevalier, A., 1933, Monographie de l’arachide, Rev. Bot. Appliq. 13:697–711.Google Scholar
  2. Harms, H., 1908, Kerstingiella geocarpa Harms, n.sp., Ber. Deutsch. Bot. Ges. 26a:230–231, vol. 3.Google Scholar
  3. Hepper, F. N., 1963, Kerstingiella Harms, Kew Bull. 16:404–405.Google Scholar
  4. Marechal, R., and Baudet, J. C., 1977, Transfert du genre africain Kerstingiella Harms a Macrotyloma (Wight & Arn.) Verdc. (Papilionaceae), Bull. Jard. Bot. Nat. Belg. 47:49–52.CrossRefGoogle Scholar

Reference

  1. McKee, R., 1949, Burclover, cultivation and utilization, U.S. Dep. Agric., Farmers Bull. 1741:1–12, illus.Google Scholar

References

  1. Hanson, C. H. and Barnes, D. H., 1973, in: Forages (M. E. Heath, D. S. Metcalfe, and R. F. Barnes, eds.) 3rd ed., pp. 136–147, illus., Iowa State University Press, Ames, 755 pp.Google Scholar

Reference

  1. McKee, R., 1916, Button clover, U.S. Dep. Agric., Farmers Bull. 730:9 pp.Google Scholar

Reference

  1. Cooper, C. S., and Carleton, A. E. (eds.), 1969, Sainfoin Symposium at Montana State University, Dec. 12–13, 1968, Mont. Agric. Exp. Stn., Bull. 627:1–109, illus.Google Scholar
  2. McKee, R., 1949, Bur-clover: Cultivation and utilization, U.S. Dep. Agric., Farmers Bull. 1741:1–12, illus.Google Scholar

References

  1. Barnes, R. F., and Gordon, C. H., 1972, Feeding value and on-farm feeding, in: Alfalfa Science and Technology (C. H. Hanson, ed.), pp. 601–630, Agronomy Series No. 15, American Society of Agronomists, Madison, Wisc.Google Scholar
  2. Hanson, C. H. (ed.), 1972, Alfalfa Science and Technology, Agronomy Series No. 15, American Society of Agronomists, Madison, Wisc., 812 pp.Google Scholar
  3. Hanson, C. H., and Barnes, D. K., 1973, in Forages (M. E. Heath, D. S. Metcalfe, and R. F. Barnes, eds.), 3rd ed., pp. 136–147, illus., Iowa State University Press, Ames, 755 pp.Google Scholar
  4. Heinrichs, D. H., 1963, Creeping alfalfas, Adv. Agron. 15:317–337.CrossRefGoogle Scholar
  5. Miller, P. K., 1976, Breakthrough in alfalfa research, Minn. Sci. 32:4–7.Google Scholar
  6. Ries, S. K., Wert, V., Sweeley, C. C., and Leavitt, R. A., 1977, Triacontal: A new naturally occuring plant growth regulator, Science 195:1339–1341.PubMedCrossRefGoogle Scholar

References

  1. Gorz, H. J., and Smith, W. K., 1973, in: Forages: The Science of Grassland Agriculture (M. E. Heath, D. S. Metcalfe, and R. F. Barnes, eds.), 3rd ed., pp. 159–166, illus., Iowa State University Press, Ames, 755 pp.Google Scholar
  2. Gross, A. T. H., and Stevenson, G. A., 1964, Resistance in Melilotus species to the sweetclover weevil (Sitona cylin-dricollis), Can. J. Plant Sci. 44:487–488.CrossRefGoogle Scholar
  3. Smith, W. K., and Gorz, H. J., 1965, Sweetclover improvement, Adv. Agron. 17:163–231.CrossRefGoogle Scholar
  4. Stevenson, G. A., 1969, An agronomic and taxonomic review of the genus Melilotus Mill, Can. J. Plant Sci. 49:1–20.CrossRefGoogle Scholar

References

  1. Gross, A. T. H., and Stevenson, G. A., 1964, Resistance in Melilotus species to the Sweetclover weevil (Sitona cylin-dricollis), Can. J. Plant Sci. 44:487–488.CrossRefGoogle Scholar
  2. Smith, W. K., 1954, Viability of interspecific hybrids in Melilotus, Genetics 39:266–279.PubMedGoogle Scholar

References

  1. Bort, K. S., 1909, The Florida velvet bean and its history, U.S. Dep. Agric., Bur. Pl. Ind., Bull. 14(3):25–32, illus.Google Scholar
  2. Daxenbichler, M. E., VanEtten, C. H., Hallinan, E. A., Earle, F. R., and Barclay, A. S., 1971, Seeds as sources of l-Dopa, J. Med. Chem. 14:463–465.PubMedCrossRefGoogle Scholar
  3. Piper, C. V., and Tracy, S. M., 1910, The Florida velvet bean and related plants, U.S. Dep. Agric., Bur. Pl. Sci., Bull. 179:1–26, illus.Google Scholar
  4. Rehr, S. S., Janzen, D. H., and Feeny, P. P., 1973, L-dopa in legume seeds: A chemical barrier to insect attack, Science 181:81–82.PubMedCrossRefGoogle Scholar
  5. Stephens, J. L., 1970, The velvetbean, U.S. Dep. Agric., Agric. Res. Ser., Crops Res. Div. CA-34–162:1–6.Google Scholar
  6. U.S. Department of Agriculture, 1959, The velvetbean caterpillar. How to control it, U.S. Dep. Agric. Leaflet 348:1–4, illus.Google Scholar

References

  1. Guenther, E., 1945, Survey of balsam Tolu and oil of balsam of Tolu, Am. Perfum. Essent. Oil Rev., 2 pp.Google Scholar
  2. Weir, J., 1864, On Myroxylon toluiferum and the mode of processing the balsam of Tolu, Technologist 5:67–71.Google Scholar

References

  1. Attfield, Dr., 1963, Note on the Gum-resin of the Balsam of Peru Tree, Pharm. J. 5.2.5:248.Google Scholar
  2. Bennett, C. T., 1928, Balsam of Peru, Perfum. Essent. Oil Rec. 19:423–424.Google Scholar
  3. Guenther, E., 1940, Balsam Peru, a survey, Drugs Cosmetic Ind. July:6 pp., illus.Google Scholar
  4. Hanbury, D., 1863–1864, On the manufacture of Balsam of Peru, Pharm. J. 5.2.5:241–248; Additional note, 5.2.5:315–317, illus.Google Scholar
  5. Martinez, Alfredo, et al., 1940, El balsamo negro de El Salvador, Cafe El Salvador 10:5–72, illus.Google Scholar

References

  1. Auld, D. L., Ditterline, R. L., and Mathre, D. E., 1977, Screening sainfoin for resistance to root and crown rot caused by Fusarium solani (Mart.) Appel and Wr, Crop Sci. 17:69–73.CrossRefGoogle Scholar
  2. Carleton, A. E., and Cooper, C. S., 1968, A compilation of abstracts on sainfoin literature, 93 pp.Google Scholar
  3. Cooper, C. S., and Carleton, A. E. (eds.), 1969, Sainfoin Symposium at Montana State University, Dec. 12–13, 1968, Mont. Agric. Exp. Stn., Bull. 627:1–109, illus.Google Scholar
  1. Ditterline, R. L., and Cooper, C. S., 1975, Fifteen years with sainfoin, Mont. Agric. Exp. Stn., Bull. 681:23 pp.Google Scholar
  2. Ditterline, R. L., Newman, C. W., and Carleton, A. E., 1977, Evaluation of sainfoin seed as a possible protein supplement for monogastric animals, Nutr. Rep. Int. 15(4):397–405.Google Scholar

References

  1. USDA, ARS, Forage and Range Section, Field Crops Research Branch, Serradella, 1954, 2 pp. mimeo.Google Scholar
  2. Williams, W. M., DeLautour, G., and Stiefel, W., 1975, Potential of serradella as a winter annual forage legume on sandy coastal soil, N. Z. J. Exp. Agric. 3(4):339–342.Google Scholar

References

  1. Clausen, R. T., 1944, Yam bean, warm-climate plant is a possible new insecticide, N.Y. State Agric. Exp. Stn., Farm Res. July: 14.Google Scholar
  2. Clausen, R. T., 1944, A botanical study of the yam bean (Pachyrrhizus), Cornell Univ. Agric. Exp. Stn., Mem. 264:3–38, illus.Google Scholar
  3. Huart, A., 1902, La jicama, su classficacion, su cultivo, sus usos, Soc. Agric. Mex. Bot. 26:555–558.Google Scholar
  4. Norton, L. B., 1943, Rotenone in the yam bean (Pachyrrhizus erosus),J. Am. Chem. Soc. 65(11):2259–2260.CrossRefGoogle Scholar
  5. Sinha, R. P., Prakash, R., and Hauque, M. F., 1977, Genetic variability in yam bean, Trop. Grain Leg. Bull. 7:21–23.Google Scholar

Reference

  1. Schroeder, C. A., 1967, The jicama, a rootcrop from Mexico, Am. Soc. Hortic. Sci. 11:65–71.Google Scholar

References

  1. Ahn, P., 1961, Soil vegetation relationships in the western forest areas of Ghana, Trop. Soils Veg. Proc. Abidjan Symp., p. 78, Oct. 20–24, 1959.Google Scholar
  2. Kar, A., and Okechukwu, A. D., 1978, Chemical investigations of the edible seeds of Pentaclethra macrophylla (Benth.), Qual. Plant.—Plant Foods Hum. Nutr. 28(1):29–36.CrossRefGoogle Scholar

References

  1. Freeman, G. F., 1918 (Revised), Southwestern beans and teparies, Univ. Ariz., Agric. Exp. Stn., Bull. 68:1–55.Google Scholar
  2. Nabham, G. P., and Feiger, R. S., 1978, Teparies in southwestern North America, Econ. Bot. 32(1):2–19.Google Scholar
  3. Schuster, M. L., Coyne, D. P., and Hoff, B., 1973, Comparative virulence of Xanthomonas phaseoli strains from Uganda, Colombia, and Nebraska, Plant Dis. Rep. 57(l):74–75.Google Scholar

References

  1. Kaplan, L., 1965, Archeology and domestication in American Phaseolus (beans), Econ. Bot. 19:353–368.CrossRefGoogle Scholar
  2. Masefield, G. B., et al., 1969 (repr. 1971), The Oxford Book of Food Plants, p. 36, Oxford University Press, London.Google Scholar

References

  1. Baudet, J. C., 1977, Origine et classification des espèces cultivées du genre Phaseolus, Bull. Soc. R. Bot. Belg. 110:65–76.Google Scholar
  2. van Eseltine, G. P., 1931, Variation in the lima bean, Phaseolus lunatus L., as illustrated by its synonymy, N.Y. Agric. Exp. Stn., Geneva, Tech. Bull. 182.Google Scholar
  3. Evans, I. M., and Boulter, D., 1974, Amino acid composition of seed meals of yam bean (Sphenostylis stenocarpa) and lima bean (Phaseolus lunatus), J. Sci. Fd. Agric. 25:919–922.CrossRefGoogle Scholar
  4. Le Marchand, G., Marechal, R., and Baudet, J. C., 1976, Observations sur quelques hybrides dans le genre Phaseolus III, P. lunatus; nouveaux hybrides et considerations sur les affinités interspecifiques, Bull. Rech. Agron. Gembloux 11(1–2): 183–200.Google Scholar
  5. Mackie, W. W., 1943, Origin, dispersal and variability of the Lima bean, Phaseolus lunatus, Hilgardia 15:1–29.Google Scholar
  6. Seelig, R. A., and Roberts, E., 1955, Lima Beans. Fruit and Vegetable Facts and Pointers, 4 pp., United Fruit and Vegetable Association, Washington, D.C.Google Scholar

References

  1. CIAT, 1974–1978, Bean production program, Annual Reports, 1974–1977.Google Scholar
  2. Graham, P. H., 1978, Some problems and potentials of Phaseolus vulgaris L. in Latin America, Field Crops Res.Google Scholar
  3. Kaplan, L., 1965, Archeology and domestication in American Phaseolus (beans), Econ. Bot. 19:358–368.CrossRefGoogle Scholar
  4. Seelig, R. A., and Roberts, E., 1960, Green and Wax Snap Beans. Fruit and Vegetable Facts and Pointers, 18 pp., illus., United Fruit and Vegetable Association, Washington, D.C.Google Scholar
  5. Zaumeyer, W. J., and Thomas, H. R., 1962, Bean diseases— and how to control them, U.S. Dep. Agric., Agric. Res. Ser., Agric. Handb. 225.Google Scholar

References

  1. Gentry, H. S., 1971, Pisum resources, a preliminary survey, Plant Genet. Res. Newsl. 25:3–13.Google Scholar
  2. Zohary, D., and Hopf, M., 1973, Domestication of pulses in the Old World, Science 182:887–894.PubMedCrossRefGoogle Scholar

References

  1. Hymowitz, T., and Boyd, J., 1977, Origin, ethnobotany and agricultural potential of the winged bean—Psophocarpus tetragonolobus, Eton. Bot. 31:180–188.CrossRefGoogle Scholar
  2. Khan, T. N., 1976, Papua New Guinea: A centre of genetic diversity in winged bean [Psophocarpus tetragonolobus (L.) DC], Euphytica 25:693–706.CrossRefGoogle Scholar
  3. Khan, T. N., Bohn, J. C, and Stephenson, R. A., 1977, Winged Bean: Cultivation in Papua New Guinea, World Crops 29:208–216.Google Scholar
  4. Levy, J. (ed.), 1977, The Winged Bean Flyer, 2 Nos., Department of Agronomy, University of Illinois, Urbana.Google Scholar
  5. Masefield, G. B., 1961, Root nodulation and agricultural potential of the leguminous genus Psophocarpus, Trop. Agric. (Trinidad) 38:225–229.Google Scholar
  6. Masefield, G. B., 1973, Psophocarpus tetragonolobus—A crop with a future, Field Crop Abstr. 26:157–160.Google Scholar
  7. National Academy of Sciences, 1975, The Winged Bean—A High-Protein Crop for the Tropics, National Academy of Sciences, Washington, D.C., 42 pp.Google Scholar
  8. PCARR, 1978, Proceedings of the Workshop/Seminar on the Development of the Potential of the Winged Bean, Philippine Council of Agriculture and Resources Research, Los Bunos (in press).Google Scholar
  9. Senanayake, Y. D. A., and Sumanasinghe, V. A. D., 1976, Leaf protein content of Psophocarpus tetragonolobus (L.) D.C., J. Natl. Agric. Soc. Ceylon 13:119–121.Google Scholar

References

  1. Githins, T. S., 1948, Drug Plants of Africa, p. 100, African Handbooks, No. 8, University of Pennsylvania Press, Philadelphia, Pa.Google Scholar
  2. Unwin, A. H., 1920, West African forests and forestry, in: The Nigerian Timber Trees, Chapter IX, pp. 46, 123, 133, 206, 273, New York.Google Scholar

Reference

  1. Baker, E. G., 1929, The Leguminosae of Tropical Africa, Part II, Suborder Papilionaceae, p. 542.Google Scholar

Reference

  1. Rajaratnam, J. A., and Ang, P. G., 1972, Nitrogen fixation by Pueraria phaseoloides in Malaysia, Malau. Agric. Res. 1(2):92–97.Google Scholar

References

  1. Chela, K. S., and Brar, Z. S., 1973, Green-manuring popular again, Prog. Farming (India) 16(3): 11.Google Scholar
  2. Mazumdar, A. K., Day, A., and Gupta, P. D., 1973, Composition of dhanchia fiber (Sesbania aculeata Pers.), Science Cult. 39(10):473–474.Google Scholar

Reference

  1. Kirby, R. H., 1963, Vegetable Fibers, Botany, Cultivation and Utilization, pp. 191–192, Leonard Hill, Ltd., London.Google Scholar

References

  1. Evans, I. M., and Boulter, D., 1974, Amino acid composition of seed meals of yam-bean (Sphenostylis stenocarpa) and lima bean (Phaseolus lunatus), J. Sci. Food Agric. 25(8):919–922.PubMedCrossRefGoogle Scholar
  2. Okigbo, B. N., 1973, Introducing the yambean Sphenostylis stenocarpa (Hochst ex A. Rich) Harms, pp. 224–237, Proceeding of the First UTA Grain Legumes Improvement Workshop, Oct. 29-Nov. 2, 1973, London.Google Scholar
  3. Oliver, D., 1871, Flora of Tropical Africa, Leguminosae, Vol. 2, (Vigna ornata), 613 pp., L. Reeve & Co., London.Google Scholar

Reference

  1. ’t Mannetje, L., 1969, Rhizobium affinities and phenetic relationships within the genus Stylosanthes, Aust. J. Bot. 17:553–564.CrossRefGoogle Scholar

References

  1. Anonymous, 1972, Annual Report, Centro Internacional de Agricultura Tropical, CIAT, Cali, Colombia.Google Scholar
  2. Irwin, J. A. G., and Camerou, D. F., 1977, Two diseases of Stylosanthes caused by Colletotrichum gloeosporioides in Australia, and pathogenic specialization with one of the causal organisms, Aust. J. Agric. Res. 28 (in press).Google Scholar
  3. Lenne, J. M., and Sonoda, R. M., 1978, Colletotrichum spp. or Stylosanthes spp., Trop. Grassl. 12 (submitted for publication).Google Scholar
  4. ’t Mannetje, L., 1977, A revision of Stylosanthes guianensis (Aubl.) Sw., Aust. J. Bot. 25:347–362.CrossRefGoogle Scholar
  5. O’Brien, R. G., and Pout, W., 1977, Diseases of Stylosanthes in Queensland, Queensl. Agric. J. 103:126–128.Google Scholar
  6. Tuley, P., 1968, Stylosanthes gracilis, Hetbage Abstr. 38(2):87–94.Google Scholar

References

  1. Cameron, D. F., 1965, Variation in flowering time and in some growth characteristics of Townsville stylo (Stylosanthes humilis), Aust. J. Exp. Agric. Anim. Husb. 5:49–51.CrossRefGoogle Scholar
  2. Humphreys, L. R., 1967, Townsville stylo: History and prospect, J. Aust. Inst. Agric. Sci. March:3–13.Google Scholar
  3. Kretschmer, A. E., Jr., 1968, Stylosanthes humilis, a summer-growing, self-regenerating, annual legume for use in Florida pasture, Fla. Agric. Exp. Stn., Circ. S-184:1–21, illus.Google Scholar
  4. ’t Mannetje, L., and van Bennekom, K. H. L., 1974, Effect of time of sowing on flowering and growth of Townsville stylo, Aust. J. Exp. Agric. Anim. Husb. 14:182–185.CrossRefGoogle Scholar
  5. Norman, M. J. T., 1959, Influence of fertilizers on the yield and nodulation of Townsville stylo (Stylosanthes sundaica Taub.), CSIRO, Aust. Div. Land Res. Reg. Surv., Tech. Paper 5.Google Scholar
  6. Ritson, J. B., Edye, L. A., and Robinson, P. J., 1971, Botanical and chemical composition of a Townsville stylo-speargrass pasture in relation to conception rate of cows, Aust. J. Agric. Res. 22:993–1007.CrossRefGoogle Scholar
  7. Sillar, D. I., 1967, Effect of shade on growth of Townsville stylo (Stylosanthes humilis H.B.K.), Queensl. J. Agric. Anim. Sci. 24:237.Google Scholar
  8. Skerman, R. H., and Humprheys, L. R., 1975, Flowering and seed formation of Stylosanthes humilis as influenced by time of sowing, Aust. J. Exp. Agric. Anim. Husb. 15:74–79.CrossRefGoogle Scholar

References

  1. Fisch, B. E., 1974, The tamarind, California Rare Fruit Growers Yearbook 1974:221–250.Google Scholar
  2. Mell, C. D., 1921, The tamarind as a fruit tree, Bull. Pan Am. Union Feb.: 168–170, illus.Google Scholar

References

  1. Ceylon Department of Agriculture, 1929, Green manuring with particular reference to coconuts, Ceylon Dep. Agric., Leaflet 57; Trop. Agric. (Ceylon) 73:144–145.Google Scholar
  2. Roark, R. C., 1937, Tephrosia, as an insecticide—A review of the literature, U.S. Dep. Agric., Bur. Ent. PL Quarant. E-402:1–165.Google Scholar

References

  1. Gupta, P. C., and Pradhan, K., 1974, Studies on the nutritive value of forages. II. Berseem (Trifolium alexandrinum), Haryana Agric. Univ. J. Res. 4(1):75–81.Google Scholar
  2. Kaddah, M. T., 1962, Tolerance of berseem clover to salt, Agron. J. 54:421–425.CrossRefGoogle Scholar
  3. Kretschmer, A. E., Jr., 1964, Berseem clover, a new winter annual for Florida, Univ. Fla., Fla. Agric. Exp. Stn., Circ. S-163:l-16, illus.Google Scholar

References

  1. Bryant, W. G., 1974, Caucasian clover (Trifolium ambiguum Bieb.): A review, J. Aust. Inst. Agric. Sci. 40(1): 11–19.Google Scholar
  2. Hollowell, E. A., 1955, Kura clover, U.S. Dep. Agric., Field Crops Notes, 3 pp., Beltsville, MD.Google Scholar
  3. Townsend, C. E., 1970, Phenotypic diversity for agronomic characters and frequency of self-compatible plants in Trifolium ambiguum, Can. J. Plant Sci. 50:331–338.CrossRefGoogle Scholar

Reference

  1. Hollowell, E. A., 1960, Strawberry Clover: A legume for the West, U.S. Dep. Agric., Leaflet 464.Google Scholar

References

  1. Raguse, C. A., Meake, J. W., and Summer, D. C., 1974, Developmental morphology of seedling subterranean and rose clover leaves, Crop Sci. 14(2):333–334.CrossRefGoogle Scholar
  2. Thomas, J. H., 1971, Trifolium hirtum L. (Fabaceae) in California, Madrono 21:258.Google Scholar
  3. Williams, W. A., Love, R. M., and Berry, L. J., 1957, Production of range clovers, Calif. Agric. Exp. Stn., Circ. 458.Google Scholar

References

  1. Hermann, F. J., 1966, Notes on Western Range Forbs: Cruci-ferae to Compositae, pp. 150–151, illus., Washington, D.C.Google Scholar
  2. Pieters, A. J., 1947, Alsike clover, U.S. Dep. Agric., Farmers Bull. 1151:1–18, illus.Google Scholar

References

  1. U.S. Department of Agriculture, 1971, Growing crimson clover, U.S. Dep. Agric., Leaflets 842:1–10, illus.Google Scholar
  2. Lee, W. O., 1964, Chemical control of weeds in crimson clover grown for seed production, U.S. Dep. Agric., Tech. Bull. 1302:1–21, illus.Google Scholar

References

  1. Kownacka, M., 1958, Preliminary observations on zig-zag clover, Rocz. Nauk Roln., Ser. F 72(3): 1–6.Google Scholar
  2. Robertson, R. W., and Armstrong, J. M., 1964, Factors affecting seed production in Trifolium medium, Can. J. Plant Sci. 44:337–343.CrossRefGoogle Scholar
  3. Townsend, C. E., 1971, Registration of C-l zigzag clover germ-plasm, Crop Sci. 11:139.CrossRefGoogle Scholar
  4. Townsend, C. E., Dotzenko, A. D., Storer, K. R., and Edlin, F. E., 1967, Response of zigzag clover genotypes to management practices, Can. J. Plant Sci. 48:273–279.CrossRefGoogle Scholar

References

  1. Hoveland, C. S., 1960, Ball clover, Auburn Univ. Agric. Exp. Stn., Leaflet 64.Google Scholar
  2. Hoveland, C. S., 1962, Ball clover is rolling, Crops Soils 15(2):8.Google Scholar
  3. Kretschmer, A. E., 1966, Production and adaptability of Trifolium sp. in South Florida, Proc. Soil Crop Sci. Soe. Fla. 26:81–93.Google Scholar

References

  1. Taylor, N. L., 1973, Red clover and alsike clover, in: Forages (M. E. Heath, D. S. Metcalfe, and R. F. Barnes, eds.), 3rd ed., pp. 148–158, Iowa State University Press, Ames, 755 pp.Google Scholar
  2. U.S. Department of Agriculture, 1954, The clover seed midge (Dasyneura leguminicola). How to control it, U.S. Dep. Agric., Leaflet 379. Google Scholar
  3. U.S. Department of Agriculture, 1968, Growing red clover, U.S. Dep. Agric., Leaflet 531:1–8, illus.Google Scholar

References

  1. Foulds, W., 1977, The physiological response to moisture supply of cyanogenic and acyanogenic phenotypes of Trifolium repens L. and Lotus corniculatus L., Heredity 39(2):219–234.CrossRefGoogle Scholar
  2. Foulds, W., and Young, L., 1977, Effect of frosting, moisture, stress and potassium cyanide on the metabolism of cyanogenic and acyanogenic phenotypes of Lotus corniculatus L. and Trifolium repens L., Heredity 38(1): 19–24.CrossRefGoogle Scholar
  3. Gibson, P. B., and Hollowell, E. A., 1966, White clover, U.S. Dep. Agric., Agric. Handb. 314:1–33, illus.Google Scholar
  4. Leffel, R. C., and Gibson, P. B., 1973, White clover, in: Forages (M. E. Heath, D. S. Metcalfe, and R. F. Barnes, eds.), 3rd ed., pp. 167–176, illus., Iowa State University Press, Ames, 755 pp.Google Scholar
  5. Marble, V. L., et al., 1970, Ladino clover seed production in California. Calif. Agric. Exp. Stn. Ext. Serv., Circ. 554:1–36, illus.Google Scholar
  6. Oswald, T. H., Smith, A. E., and Phillips, D. V., 1977, Herbicide tolerance developed in cell suspension cultures of perennial white clover, Can. J. Bot. 55(10): 1351–1358.CrossRefGoogle Scholar
  7. Stewart, I., and Bear, F. E., 1951, Ladino clover, its mineral requirements and chemical composition, N.J. Agric. Exp. Stn., Rutgers Univ., Bull. 759:1–32, illus., New Brunswick, N.J.Google Scholar

References

  1. Relwani, L. L. 1973. Shaftal (Trifolium resupinatum) or (Trifolium suaveolens), Indian Dairyman 25(3): 117–120.Google Scholar
  2. Texas A & M University, 1964, Abon, Persianclover, Leaflet 618:1–4, illus., College Station, Texas.Google Scholar
  3. U. S. Department of Agriculture, 1960, Persian clover—A legume for the South, U.S. Dep. Agric., Leaflet 484.Google Scholar

References

  1. Coats, R. E., and Johnson, C. M., 1959, Subclover, a satisfactory reseeding winter annual legume, Miss. State Univ., Agric. Exp. Stn., Inf. Sheet 647:1–2.Google Scholar
  2. Cocks, P. S., 1973, The influence of temperature and density on the growth of communities of subterranean clover (Trifolium subterraneum L. cv. Mount Barker), Aust. J. Agric. Res. 24(4):479–495.CrossRefGoogle Scholar
  3. Katznelson, J., 1974, The subterranean clovers of Trifolium subsect. Calycomorphua Katzn. Trifolium subterraneum L. sensu latu, Israel J. Bot. 23:69–108.Google Scholar
  4. Raguse, C. A., Menke, J. W., and Sumner, D. C., 1974, Developmental morphology of seedling subterannean and rose clover leaves, Crop Sci. 4(2):333–334.CrossRefGoogle Scholar
  5. Rampton, H. H., 1952, Growing subclover in Oregon, Agric. Exp. Stn., Ore. State Coll., Stn. Bull. 432:1–12, illus., Corvallis.Google Scholar
  6. Read, J. W., 1973, Comparison of introduced lines of Trifolium subterraneum subsp. yanninicum with cultivars of T. subterraneum 2, yield and formononetin concentration under irrigation at Leeton, New South Wales, Fld. Sta. Rec. Div. Pl. Ind., CSIRO 12:5–9.Google Scholar

References

  1. Ahlich, V. E., and Byrd, M., 1966, Meechee—A new variety of arrowleaf clover, Miss. State Univ., Agric. Exp. Stn., Inf. Sheet 948:l-2, illus.Google Scholar
  2. Ball, D. M., Hoveland, C. S., and Buchanan, G. A., 1974, Flower and seed production in Yuchi arrowleaf clover, Agron. J. 66(4):581–583.CrossRefGoogle Scholar
  3. Bates, R. P., undated, 1974–75 forage yields from ryegrass and legume varieties and strains, Samuel Roberts Noble Foundation Publ. R-152: 2 pp.Google Scholar
  4. Beaty, E. R., and Powell, J. D., 1969, Forage production of amclo and crimson clover on Pensacola bahiagrass sods, J. Range Manage. 22:36–39.CrossRefGoogle Scholar
  5. Beaty, E. R., Powell, J. D., and McCreery, R. A., 1963, Amelo—A high-yielding winter clover, Univ. Ga. Coll. Agric. Exp. Stn., Circ., n.s. 35:1–11, illus., Athens.Google Scholar
  6. Hoveland, C. S., et al., 1969, Yuchi arrowleaf clover, Auburn Univ., Agric. Exp. Stn., Bull. 396:1–27, illus.Google Scholar
  7. Hoveland, C. S., et al., 1970, Management effects on forage production and digestibility of Yuchi arrowleaf clover (Trifolium vesiculosum Savi), Agron. J. 62.Google Scholar

References

  1. Banyai, L., 1973, Botanical and qualitative studies on ecotypes of fenugreek (Trigonella foenum-graecum L.), Agrobotanika 15:175–187.Google Scholar
  2. Ghosal, G., Srivastava, R. S., Chatterjee, D. C., and Dutta, S. K., 1974, Fenugreekine, a new steroidal sapogenin-peptide ester of Trigonella foenum-graecum, Phytochemistry 13:2247–2251.CrossRefGoogle Scholar
  3. Paroda, R. S., and Karwasra, R. R., 1975, Prediction through genotype environment interactions in fenugreek, Forage Res. (1):31–39.Google Scholar
  4. Rao, P. G., and Sriramuly, M., 1977, Physiological characterization of a spice (Coriundrum sativum) and a condiment (Trigonella foenum-graecum) during vegetative and reproductive stages, Curr. Sci. 46(17):615–616.Google Scholar
  5. Singh, D., and Singh, A., 1974, A green trailing mutant of rigonella foenum-graecum L. (Metha), Crop improvement l(l/2):98–100.Google Scholar

References

  1. Blum, A., and Lehrer, W., 1973, Genetic and environmental variability in some agronomical and botanical characters of common vetch (Vicia sativa L.), Euphytica 22:89–97.CrossRefGoogle Scholar
  2. Gunn, C. R., 1971, Seeds of native and naturalized vetches of North America, U.S. Dep. Agric., Agric. Handb. 392:1–42, illus.Google Scholar
  3. Henson, P. R., and Schoth, H. A., 1968, Vetch culture and uses, U.S. Dep. Agric., Farmers Bull. 1740:1–20, illus.Google Scholar
  4. Hermann, F. J., 1960, Vetches in the US—Native, naturalized and cultivated, U.S. Dep. Agric., Agric. Handb. 168:1–84, illus.Google Scholar

References

  1. Bond, D. A., 1977, Field bean, in: Evolution of Crop Plants (N. W. Simmonds, ed.), pp. 179–182, Longman’s, London, 339 pp.Google Scholar
  2. Cubrero, J. I., 1973, Evolutionary trends in Vicia faba, Theor. Appl. Genet. 43:59–65.Google Scholar
  3. Evans, L. E., et al., 1972, Horsebeans—A protein crop for Western Canada? Can. J. Plant Sci. 52:657–659.CrossRefGoogle Scholar
  4. Ishag, H. M., 1973, Physiology of seed yield in field beans Vicia faba). II. Yield and yield components, J. Agric. Sci. Camb. 80:181–189.CrossRefGoogle Scholar
  5. Lewis, W. H., and Elvin-Lewis, M. P. F., 1977, Medical Botany, Wiley, N.Y., 515 pp.Google Scholar
  6. Poulsen, M. H., 1977, Obligate autonomy in Vicia faba L., J. Agric. Sci. 88(1):253–256.CrossRefGoogle Scholar
  7. Sharaf, A., Kamel, S. H., and El-Shabrawy, O. A., 1972, Some pharmacological studies on Vicia faba cotyledons grown in Egypt, Qual. Plant. Mater. Veg. 22(1):99–105.CrossRefGoogle Scholar
  8. Sprent, J. I., Bradford, A. M., and Norton, C., 1977, Seasonal growth patterns in field beans (Vicia faba) as affected by population density, shading and its relationship with soil moisture, J. Agric. Sci. 88(2):293–301.CrossRefGoogle Scholar
  9. Yassin, T. E., 1973, Analysis of yield stability in field beans (Vieia faba) in the northern province of Sudan, J. Agric. Sci. Camb. 80(1): 119–124.CrossRefGoogle Scholar

References

  1. Hartman, R. W., 1969, Photoperiod responses of Phaseolus plant introductions in Hawaii, J. Am. Soc. Hortic. Sci. 94:437–440.Google Scholar
  2. Kennedy, P. B., and Madson, B. A., 1925, The mat bean, Phaseolus aconitifolius, Calif. Agr. Exp. Stn., Bull. 396: 33 pp.Google Scholar
  3. Piper, C. V., and Morse, W. J., 1914, Five oriental species of beans, U.S. Dep. Agric., Bull. 119:28–30, illus.Google Scholar

Reference

  1. Sacks, F. M., 1977, A literature review of Phaseolus angularis — The adzuki bean, Econ. Bot. 31(Jan.-Mar.):9–15.CrossRefGoogle Scholar

References

  1. Bose, R. D., 1932, Studies in Indian pulses. 5. Urd or black gram (Phaseolus mungo Linn. var. roxburghii Prain), Indian J. Agric. Sci. 2:625–637.Google Scholar
  2. Singh, R., and Singh, R., 1975, Studies on a mosaic disease of urd bean (Phaseolus mungo L.), Phytopathol. Mediterr. 14(2/3): 55–59.Google Scholar

References

  1. Ahmad, M., 1975, Screening of mungbean (Vigna radiata) and urdbean (V. mungo) germplasms for resistance to yellow mosaic virus, J. Agric. Res. (Pakistan) 13(1):349–354.Google Scholar
  2. AVRDC, 1976, Mungbean Report for 1975, Asian Vegetable Research and Development Center. Shanhua, Taiwan, Republic of China.Google Scholar
  3. Biswas, M. R., and Dana, S., 1975, Phaseolus aureus X P. lathyroides Cross, Nucleus 18:81–85.Google Scholar
  4. Ligon, L. L., 1945, Mung Beans. A legume for seed and forage production, Okla. State Univ. Bull. B-284:l-12.Google Scholar
  5. Matlick, R. S., and Oswalt, R. M., 1963, Mungbean varieties for Oklahoma, Okla. State Univ. Bull. B612: 1–15.Google Scholar
  6. Wester, R. E., 1964, Growing mungbean sprouts, U.S. Dep.Agric., Agric. Res. Serv., Rep. CA-4–59(Jan.):l-2.Google Scholar

Reference

  1. Chaudhuri, A. P., and Prasad, B., 1972, Flowering behaviour and yield of rice bean (Phaseolus calcaratus Roxb.) in relation to date of sowing, Indian J. Agric. Sci. 42:627–630.Google Scholar

References

  1. El Baradi, T. A., 1975, Pulses 1. Cowpeas, Abstr. Trop. Agric. 1(12):9–19.Google Scholar
  2. Lorz, A. P., et al., 1955, Production of Southern Peas (Cowpeas) in Florida, Bull. Fla. Agric. Exp. Stn. 557.Google Scholar
  3. Lorz, A. P., 1961, Breeding southern peas for processing, Proc. Fla. State Hortic. Soc. 74:282–284.Google Scholar
  4. Philpotts, H., 1965, Effect of soil temperature on nodulation of cowpeas(Vigna sinensis), Aust. J. Exp. Agr. Anim. Hush., 7:312–376.Google Scholar
  5. Steele, W. M., 1972, Doctoral thesis, University of Reading, United Kingdom, 242 pp.Google Scholar
  6. Summerfield, R. J., Huxley, P. A., and Steele, W. M., 1974, Cowpea (Vigna unguiculata (L.) Walp.), Field Crop Abstr. 27(7):301–312.Google Scholar

References

  1. Anonymous, 1910, The Bambarra groundnut, Agric. News 9(222):340–341.Google Scholar
  2. Doku, E. V., and Karikari, S. K., 1971, Bambarra groundnut, Econ. Bot. 25(3):255–262.CrossRefGoogle Scholar
  3. Doku, E. V., and Karikari, S. K., 1971, The role of ants in pollination and pod production of Bambarra groundnut, Econ. Bot. 25(4):357–362, illus.CrossRefGoogle Scholar
  4. Doku, E. V., 1968, Flowering, pollination, and pod formation in Bambarra groundnut (Voandzeia subterranea) in Ghana, Exp. Agric. 4:41–48.CrossRefGoogle Scholar
  5. Doku, E. V., 1969, Growth habit and pod production in Bambarra groundnut (Voandzeia subterranea), Ghana J. Agric. Sci. 2.Google Scholar
  6. Hepper, F. N., 1963, The Bambarra groundnut (Voandzeia subterranea) in West Africa, Kew Bull. 16:398–407.Google Scholar
  7. Holm, J. M., and Marloth, B. W., 1940, Bambarra groundnut or Njugobean, Farming S. Afr. Bull. 215.Google Scholar
  8. Johnson, D. F., 1968, The Bambarra groundnut (Voandzeia subterranea), Rhod. Agric. J. 65(1): 1–4.Google Scholar
  9. Karikari, S. K., and Lavoe, S. K., 1977, Preliminary evaluation and utilization of fourteen cultivars of Bambarra groundnut (Voandzeia subterranea Thouars), Acta Hortic. 53:195–199.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • James A. Duke
    • 1
  1. 1.United States Department of AgricultureBeltsvilleUSA

Personalised recommendations