Electrical Double Layers in Ion Transport and Excitation

  • Martin Blank


The dimensions of biological cells and biopolymers are in the range of classic colloids, a region where surfaces play an important role in determining the properties of a system. When the biological surfaces are charged, the effects on the properties are usually more pronounced, and can be calculated in terms of the resulting electrical double layers.


Electrical Double Layer Excitable Membrane Squid Axon Nerve Excitation Apparent Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, J. (1902). Untersuchungen zur Thermodynamik der bioelecktrischen Strome. Pflugers Arch. 92, 521–562.CrossRefGoogle Scholar
  2. Blank, M. (1975). A Model for Calculating the Bohr Effect in Hemoglobin Equilibria. J. Theoret. Biol. 51, 127–134.CrossRefGoogle Scholar
  3. Blank, M. (1976). Hemoglobin Reactions as Interfacial Phenomena. J. Electrochem. Soc. 123, 1653–1656.CrossRefGoogle Scholar
  4. Blank, M. (1980). A Surface Free Energy Model for Protein Structure in Solution: Hemoglobin Equilibria. Colloids and Surfaces 1, 139–149.CrossRefGoogle Scholar
  5. Blank, M. (1982). The Surface Compartment Model-Role of Surface Charge in Membrane Permeability Changes. Bioelectrochem. Bioenerg. 9, 615–624.CrossRefGoogle Scholar
  6. Blank, M. (1983). The Surface Compartment Model with a Voltage Sensitive Channel. Bioelectrochem. Bioenerg. 10, 451–465.CrossRefGoogle Scholar
  7. Blank, M. (1984). Molecular Association and the Viscosity of Hemoglobin Solutions. J. Theoret. Biol. 108, 55–64.CrossRefGoogle Scholar
  8. Blank, M., and J. S. Britten (1978). The Surface Compartment Model of the Steady State Excitable Membrane. Bioelectrochem. Bioenerg. 5, 528–540.CrossRefGoogle Scholar
  9. Blank, M., and W. P. Kavanaugh, (1982). The Surface Compartment Model During Transients. Bioelectrochem. Bipenerg. 9, 427–438.CrossRefGoogle Scholar
  10. Blank, M., and W. P. Kavanaugh, and G. Cerf (1982). The Surface Compartment Model-Voltage Clamp. Bioelectrochem. Bioenerg. 9, 439–458.CrossRefGoogle Scholar
  11. Chang, H. W., and E. Neumann (1976). Dynamic Properties of Isolated Acetylcholine Receptor Proteins: Release of Calcium Ions Caused by Acetylcholine Binding. Proc. Nat. Acad. Sci. USA 73, 3364–3368.PubMedCrossRefGoogle Scholar
  12. Lauffer, M. A. (1975). “Entropy Driven Processes in Biology: Polymerization of Tobacco Mosaic Virus Protein and Similar Reactions”. Springer Verlag, New York.Google Scholar
  13. Spudich, J. L., and R. A. Bogomolni (1983). Spectroscopic Discrimination of the Three Rhodopsin-Like Pigments in Halobacterium Membranes. Biophys. J. 43, 243–246.PubMedCrossRefGoogle Scholar
  14. Teorell, T. (1935). An Attempt to Formulate a Quantitative Theory of Membrane Permeability. Pro. Soc. Exp. Biol. Med. 33, 282–285.Google Scholar
  15. Wachtell, H., and E. R. Kandel (1967). A Direct Synaptic Connection Mediating Both Excitation and Inhibition. Science 158, 1206–1209.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Martin Blank
    • 1
  1. 1.Biological Sciences DivisionOffice of Naval ResearchArlingtonUSA

Personalised recommendations