Single Channel Conductance Changes of the Desethanolamine-Gramicidin Through pH Variations

  • R. Reinhardt
  • K. Janko
  • E. Bamberg


The surface potential of biological membranes seems to have influence on the ion transport across the membranes (Frankenhaeuser and Hodgkin, 1957). Changing it also changes the voltage drop across the membrane and therefore alters the field sensed by the transport protein. This will influence the voltage dependent gating of membrane channels (for survey see Hille, 1985). In literature a difference between specific charges at the channel entrance and a charge distribution in the membrane surface mainly created by the lipids is made. The theoretical treatment based on electrostatics by Debye and Hückel, Gouy, Chapman and Stern provide the experimentalist with useful equations to compare with their data. Since it is known that the biological membranes consist of a lipid bilayer into which proteins are embedded (Singer, 1972), the artificial bilayer — invented by P. Müller and coworkers in 1963 (Müller et al., 1963) provides the model system for testing the predictions based on a physical concept applied to biology (for review see McLaughlin, 1977). This article shows the influence of a discrete negative charge on the ion transport through a channel formed by a gramicidin derivative in an artificial bilayer. But before this a survey of the gramicidin in bilayers will be given followed by a short description of other bilayer experiments that have been designed to study the influence of charges on the ion transport through the gramicidin channel.


Single Channel Channel Entrance Single Channel Conductance Deprotonated Form Voltage Dependent Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O.S., 1984, Gramicidin channels, Ann. Rev. Physiol. 46: 531–548CrossRefGoogle Scholar
  2. Apell, H.-J., Bamberg, E., Alpes, H., Läuger, P., 1977, Formation of ion channels by a negatively charged analog of gramicidin A. J. Membrane Biol. 31: 171–188CrossRefGoogle Scholar
  3. Apell, H.-J., Bamberg, E., Läuger, P., 1979, Effects of surface charge on the conductance of the gramicidin channel. Biochem. Biophys. Acta 552: 369–389Google Scholar
  4. Bamberg, E. and Läuger, P., 1973, Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrane Biol. 11: 177–194CrossRefGoogle Scholar
  5. Bamberg, E., and Läuger, P., 1974, Temperature-dependent properties of gramicidin A channels. Biochim. Biophys. Acta 367: 127–133Google Scholar
  6. Bamberg, E., Noda, K., Gross, E. and Läuger, P., 1976, Single channel parameters of gramicidin A, B and C, BBA 419: 223–228Google Scholar
  7. Bamberg, E. and Läuger, P., 1977, Blocking of gramicidin channel by divalent cations. J. Membrane Biol. 35: 351–375CrossRefGoogle Scholar
  8. Bamberg, E., Apell, H.-J., Alpes, H., Gross, E., Morell, J.L., Harbaugh, J.F., Janko, K. and Läuger, P., 1978, Ion channel formed by chemical analogs of gramicidin A. Fed. Proc. 37: 2633–2638Google Scholar
  9. Eisenmann, G., Sandblom, J. and Neher, E., 1978, Interactions in cation permeation through the gramicidin channel Cs, Rb, K, Na, Li, T1, H and effects of anion binding. Biophys. J. 22: 307–340Google Scholar
  10. Finkelstein, A. and Andersen, O.S., 1981, The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspects of transport. J. Membrane Biol. 59: 155–171CrossRefGoogle Scholar
  11. Frankenhaeuser, B. and Hodgkin, A.L., 1957, The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond) 137: 218–244Google Scholar
  12. Heitz, F., Spack, G. and Trudelle, Y., 1982, Single channels of 9, 11, 13, 15 destryptonphyl-phenylalanyl-gramicidin A, Biophys. J. 40: 87–89Google Scholar
  13. Hille, B., 1984, Ionic channels of excitable membranes, Sinauer Associates Inc. Sunderland, Massachusetts Google Scholar
  14. Hladky, S.B. and Haydon, D.A., 1984, Ion movements in gramicidin channels in: current topics in membrane and transport, Vol. 21, 327–372CrossRefGoogle Scholar
  15. King, E.J. and King, G.W., 1956, The thermodynamics of amino acids. II. The Ionization constants of some N-Acyl Amino Acids. J. Am. Chem. Soc. 78: 1089Google Scholar
  16. Kolb, H.-A., Läuger, P. and Bamberg, E., 1975, Correlation analysis of electrical noise in lipid bilayer membranes: kinetics of gramicidin A channels. J. Membrane Biol. 20: 133–154CrossRefGoogle Scholar
  17. Läuger, P., 1980, Kinetic properties of ion carriers and channels, J. Membrane Biol. 57: 163–178CrossRefGoogle Scholar
  18. Liberman, E.A. and Topaly, V.P., 1968, Selective transport of ions through bimolecular phospholipid membranes, BBA 163: 125–136PubMedCrossRefGoogle Scholar
  19. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, in: “Current Topics in Membranes and Transport” 9: 71–144CrossRefGoogle Scholar
  20. Morrow, J.S., Veatch, W.R. and Stryer, L., 1979, Transmembrane channel activity of gramicidin A analogs. Effects of modification and deletion of the aminoterminal residue, J. Mol. Biol. 132: 733–738Google Scholar
  21. Müller, P., Rudin, D.O., Tien, H.T. and Wescott, W.C., 1963, Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem. 67: 534–535Google Scholar
  22. Myers, V.B. and Haydon, D.A., 1972, Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. BBA 274: 313–322Google Scholar
  23. Neher, E., Sandblom, J. and Eisenmann, G., 1978, Ionic selectivity, saturation and in gramicidin A channels. J. Membrane Biol. 40: 97–116CrossRefGoogle Scholar
  24. Ovchinnikov, A., Yu, and Ivanov, V.T., 1977, Recent developments in the structure-functional studies of peptide ionophores. in: Biochemistry of Membrane Transport, FEBS Symposium No. 42, Semenza, G. and Carafoli, E., Eds, Springer Verlag, Berlin, Heidelberg, New York, 123–146CrossRefGoogle Scholar
  25. Pressman, B.C., 1965, Induced active transport of ions in mitochondria PNAS, 63, 1076–1083CrossRefGoogle Scholar
  26. Ramachandran, G.N. and Chandrasekaran, R., 1972, Studies on Dipeptide conformations and on peptides with sequences of alternating L and D Redidues with special reference to Antibiotic and Ion transport peptides. Progr. Peptide Res. 2: 195–215Google Scholar
  27. Reinhardt, R., Janko, K. and Bamberg, E., in Prep.Google Scholar
  28. Sarges, R. and Witkop, B., 1965, Gramicidin. VIII. The structure of Valine- and Isoleucine-Gramicidin C. Biochemistry 4: 2491–2494Google Scholar
  29. Singer, S.J. and Nicolson, G.J., 1972, The fluid mosaic model of the structure of cell membranes. Science 175: 720–731PubMedCrossRefGoogle Scholar
  30. Tredgold, R.H., Hole, P.N., Sproule, R.C. and Elgamal, M., 1977, Single channel characteristics of some synthetic gramicidins. Biochim. Biophys. Acta 471: 189–194Google Scholar
  31. Urban, B.W. and Hladky, S.B., 1979, Ion transport in the simplest single file pore. BBA 554: 410–429PubMedCrossRefGoogle Scholar
  32. Urban, B.W., Hladky, S. and Haydon, D.A., 1980, Ion movements in gramicidin pores. An Exemple of single-file transport, BBA 602: 331–354Google Scholar
  33. Urry, D.W., 1971, The Gramicidin A transmembrane channel: A proposed (L,D)-Helix, PNAS 68: 672–676Google Scholar
  34. Veatch, W.R., Fossel, E.T. and Blout, E.R., The conformation of gramicidin A, Biochem. 13: 5249–5256Google Scholar
  35. Zingsheim, H.P. and Neher, E., 1974, The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes. Biophys. Chem. 2: 197–207Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Reinhardt
    • 1
  • K. Janko
    • 3
  • E. Bamberg
    • 2
  1. 1.II. Physiologisches InstitutUniversität des SaarlandesHomburgDeutschland
  2. 2.Max-Planck-Institut für BiophysikFrankfurt/MainDeutschland
  3. 3.Fakultät für BiologieUniversität KonstanzKonstanzDeutschland

Personalised recommendations