Influence of the Surface Charge Distribution and Water Layers on the Permeability Properties of Lipid Bilayers

  • E. Anibal Disalvo
  • Laura S. Bakás


The barrier properties of a biological membrane are mainly due to the stabilization of the lipid components in a bilayer conformation. The overall permeation phenomena for polar molecules involves the interaction of the permeant at the membrane/solution interface and its penetration into the hydrocarbon core. The hydration shell of the phospholipid molecules contributes to the permeability barrier as determined by equilibrium dialysis experiments. In this paper, it is shown that the adsorption of Ca on the inner and the outer interfaces of a sonicated vesicle bilayer of egg phosphatidylcholine can affect the barrier properties to non-electrolytes. In addition, P nuclear magnetic resonance shows that the adsorption of Ca+2 on the inner interface of the vesicle promotes a conformational change of the bilayer affecting the adsorptive properties of the outer interface.

This transbilayer effect is related to the changes in the order parameter of the hydrocarbon chains of the bilayer as demonstrated by fluoro-metric experiments. A semi-quantitative analysis of the conformational change and the stoichiometry of the Ca+2 adsorption is discussed.


Lipid Bilayer Barrier Property Phosphatidic Acid Polar Head Group Outer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bangham, A. D., Hill, M. W. and Miller, N. G., 1974, Preparation and use of liposomes as models of biological membranes, Methods. Membr.Biol., 1:1.Google Scholar
  2. Bangham, A. D., de Gier, J. and Greville, G. D., 1967, Osmotic properties and water permeability of phospholipid liquid crystals, Chem. Phys. Lipids, 1:225.CrossRefGoogle Scholar
  3. Blank, M., 1972, Cooperative effects in membrane reactions, J. Colloid. Int. Sci., 41:97.CrossRefGoogle Scholar
  4. Blok, M. C., van Deenen, L. L. M. and de Gier, J., 1976, Effect of the gel to liquid crystalline phase transition on the osmotic behavior of phosphatidylcholine liposomes, Biochim. Biophys. Acta, 433:1.PubMedCrossRefGoogle Scholar
  5. Cerbon, J., 1967, NMR studies on the water immobilization by lipid systems “in vitro” and “in vivo,” Biochim. Biophys. Acta, 144:1.PubMedGoogle Scholar
  6. Chapman, D., Williams, R. M. and Ladbrooke, B. D., 1967, Physical studies of phospholipids VI thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins), Chem. Phys. Lipids, 1:445.CrossRefGoogle Scholar
  7. de Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N. and van Beek, W. P., 1971, On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes, Biochim. Biophys. Acta, 233:610.PubMedCrossRefGoogle Scholar
  8. de Kruijff, B., Cullis, P. R. and Radda, G. K., 1976, Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles, Biochim. Biophys. Acta, 436:729.PubMedCrossRefGoogle Scholar
  9. Disalvo, E. A. and de Gier, J., 1983, Contribution of aqueous interphases to the permeability barrier of lipid bilayers, Chem. Phys. Lipids, 32:39.CrossRefGoogle Scholar
  10. Disalvo, E. A., 1983, Divalent cations promote transversal perturbations in lipid bilayers of sonicated vesicles, Bioelectrochem. Bioenerg., 11:145.CrossRefGoogle Scholar
  11. Hauser, H., Lipids, in: “Water: A Comprehensive Treatise,” F. Franks, ed., Plenum Press, New York (1975).Google Scholar
  12. Hauser, H. and Phillips, M. C., 1979, Interactions of the polar groups of phospholipid bilayer membranes, Prog. Surf. Membr. Sci., 13:297.Google Scholar
  13. Huang, C., 1969, Studies on phosphatidylcholine vesicles, formation and physical characteristics, Biochemistry, 8:134.CrossRefGoogle Scholar
  14. Israelachvili, J. N., Mitchell, D. J. and Nimham, B. N., 1976, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta, 470:185.Google Scholar
  15. Katz, Y. and Diamond, J. M., 1974, Nonsolvent water in liposomes, J. Membr. Biol., 17:87.PubMedCrossRefGoogle Scholar
  16. Lau, A. L. Y., McLaughlin, A. C., McDonald, R. C. and McLaughlin, S. G. A., 1980, The adsorption of alkaline earth cations to phosphatidylcholine bilayer membranes: A unique effect of calcium, Adv. Chem. Ser., 188:49.CrossRefGoogle Scholar
  17. Phillips, M. C., 1972, The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes, Prog. Surf. Membr. Sci, 5:139.Google Scholar
  18. Shinitzky, M. and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta, 515:367.PubMedGoogle Scholar
  19. Simon, S. A., Lis, L. J., Kauffman, J. W. and McDonald, R. C., 1975, A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine, Biochim. Biophys. Acta, 375:317.PubMedCrossRefGoogle Scholar
  20. van Kessel, W. S. M. G., Tieman, M. and Demel, R. A., 1981, Purification of phospholipids by preparative high pressure liquid chromatography, Lipids, 16:58.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. Anibal Disalvo
    • 1
  • Laura S. Bakás
    • 1
  1. 1.Instituto De Investigaciones Fisicoquimicas Teóricas y Aplicadas (INIFTA) C.C.La PlataArgentina

Personalised recommendations