Advertisement

Electrochemical and Macromolecular Interactions at Red Blood Cell Surface

  • Kung-ming Jan
  • Shlomoh Simchon

Abstract

Red blood cells aggregate to form rouleaux in the presence of macro-molecules. Neutral and charged macromolecules were used to induce RBC aggregation quantified by microscopic observation. Variations of cell surface potential were achieved by the removal of RBC surface charge with neuraminidase treatment or by changing the ionic composition of the fluid medium. RBC aggregation by neutral polymer dextran is enhanced by removal of RBC surface charge and decreased by reduction of ionic strength. RBC aggregation by heparin requires the presence of sialic acids at cell surface and enhanced by reduction of ionic strength. It is concluded that the surface charge of RBCs plays a significant role in cell-to-cell interactions.

Keywords

Ionic Strength Sialic Acid Intrinsic Viscosity Diffuse Double Layer Neuraminidase Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, D. E., 1973, The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. II. A model for the effect of adsorbed polymer on the diffuse double layer. J. Colloid Interface Sci., 43:687.CrossRefGoogle Scholar
  2. Brooks, D. E., Charalambous, J., and Janzen, J., 1978, The molecular mechanism of erythrocyte aggregation, in: “Proc. Third Internat. Congr. on Biorheology”, Y. C. Fung and J. G. Pinto, ed.), LaJolla, CA., pp. 91.Google Scholar
  3. Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., and Gregersen, M. I., 1966, Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol., 21:81.PubMedGoogle Scholar
  4. Chien, S., 1975, Biophysical Behavior of red cells in suspensions, in: “The Red Blood Cell”, 2nd ed.; D. MacN. Surgenor, ed., Academic Press New York; Vol. 2, pp. 1031.Google Scholar
  5. Chien, S., Simchon, S., Abbott, R. E., and Jan, K.-M., 1977, Surface adsorption of dextrans on human red cell membrane. J. Colloid Interface Sci., 62:461.CrossRefGoogle Scholar
  6. Chien, S., Sung, A. L., Kim, S., Burke, A. M., and Usami, S., 1977, Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc. Res., 13:327.PubMedCrossRefGoogle Scholar
  7. Chien, S., 1980, Aggregation of red blood cells: An electrochemical and colloid chemical problem, in: “Advances in chemistry series, no. 188 Bioelectrochemistry: ions, surface, membrane”, M. Blank, ed., American Chemical Society, 3.CrossRefGoogle Scholar
  8. Cook, G. M. W., Heard, D. H., and Seaman, G. V. F., 1961, Sialic acids and the electrokinetic change of the human erythrocyte. Nature, 191:44.PubMedCrossRefGoogle Scholar
  9. Eylar, E. H., Madoff, M. A., Brody, O. V., and Oncley, J. L., 1962, The contribution of sialic acid to the surface charge of the erythrocyte. J. Biol. Chem., 237:1992.PubMedGoogle Scholar
  10. Fåhraeus, R., 1929, The suspension stability of blood. Physiol. Rev., 9:241.Google Scholar
  11. Houwink, R., 1952, The formation and structure of macromolecules. Macromolecular sols without electrolyte character, in: “Colloid Science”, H.R., Kruyt, ed., Elsevier Publishing Co., Amsterdam, Houston, New York, London, Vol. II, Chapter II and VI.Google Scholar
  12. Jan, K.-M., and Chien, S., 1973a, Role of surface electric charge in red blood cell interactions. J. Gen. Physiol., 61:638.PubMedCrossRefGoogle Scholar
  13. Jan, K.-M., and Chien, S., 1973b, Influence of ionic composition of fluid medium on red cell aggregation. J. Gen. Physiol., 61:655.PubMedCrossRefGoogle Scholar
  14. Jan, K.-M., 1979, Red cell interactions in macromolecular suspension. Biorheology., 16:137.PubMedGoogle Scholar
  15. Jan, K.-M., 1979, Role of hydrogen bonding in red cell aggregation. J. Cell Physiol., 101:49.PubMedCrossRefGoogle Scholar
  16. Jan, K.-M., 1980, Electrochemical basis of heparin-induced red blood cells aggregation, in: “Advances in chemistry series, no. 188 Bioelectrochemistry: ions, surfaces, membranes”, M. Blank, ed., American Chemical Society, 143.CrossRefGoogle Scholar
  17. Jan, K.-M., Usami, S., and Chien, S., 1982, The disaggregation effect of dextran 40 on red cell aggregation in macromolecular suspensions. Biorheol., 19:543.Google Scholar
  18. Jan, K.-M., 1985, Roles of surface electrochemistry and macromolecular adsorption in heparin-induced red blood cell aggregation. Biorheol., in press.Google Scholar
  19. LaMer, V. K., and Healy, T. W., 1963, Adsorption-flocculation reaction of macromolecules at the solid-liquid interface. Rev. Pure Appl. Chem. 13:112.Google Scholar
  20. Overbeek, J. Th. G., 1952, Electrochemistry of the double layer. Electrokinetic phenomena. Interaction between colloidal particles. Kinetics of flocculation, in: “Colloid Science”, H.R. Kruyt, ed., Elsevier Publishing Co., Amsterdam, Houston, New York, London, vol. II, Chap. IV–VI.Google Scholar
  21. Overbeek, J. Th. G., and Bungenberg de Jong, H. G., 1952, Sols of macromolecular colloids with electrolytic nature, in: “Colloid Science”, H.R. Kruyt, ed., Elsevier Publishing Co., Amsterdam, Houston, New York, London; vol. II, Chap. VIII.Google Scholar
  22. Ponder, E., 1948, “Hemolysis and related phenomena”, Grune and Stratton, New York, pp. 398.Google Scholar
  23. Semple, R. E., 1957, An accurate method for the estimation of low concentration of dextran in plasma. Cana. J. Biochem. Physiol., 34:383.CrossRefGoogle Scholar
  24. Silverberg, A., 1962, The adsorption of flexible macromolecules. Part I. The isolated macromolecule at a plane interface. J. Phys. Chem., 66:1872.CrossRefGoogle Scholar
  25. Skalak, R., Zarda, P. R., Jan, K.- M., and Chien, S., 1981, Mechanics of rouleau formation. Biophysical J., 35:771.CrossRefGoogle Scholar
  26. Tanford, C., 1961, “Physical chemistry of macromolecules”, John Wiley and Sons, Inc., New York, London Sidney, pp. 710.Google Scholar
  27. Thorsén, G., and Hint, J., 1950, Aggregation, sedimentation and intravascular sludging of erythrocytes. Acta Chir. Scand. (Suppl.), 154:1.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kung-ming Jan
    • 1
  • Shlomoh Simchon
    • 1
  1. 1.Departments of Physiology and MedicineColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations