Electrorotation of Single Cells — A New Method for Assessment of Membrane Properties

  • Roland Glaser
  • Günter Fuhr


Cells placed in a rotating high-frequency field spin slowly at two characteristic frequencies fc1 and fc2 against and according to the rotatation of the field, respectively. This method, designated here as ELECTROROTATION, allows to measure membrane capacity, membrane conductivity and internal conductivity of single cells. Basic equations determining this process are given and correlated with experimental data. The dependence of electrorotation on external, membraneous, and internal conditions during the experiment is demonstrated. For practical use of this method it is sufficient to measure the first characteristic frequency (fc1), and additionally the frequency where the spin of the cells converts (f0). Measurements on plant protoplasts, erthrocytes and platelets indicate a lower relative membrane capacity as expected.


Characteristic Frequency Membrane Conductivity Membrane Capacity Cell Radius Plant Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold W M, Wendt B, Zimmermann U and Korenstein R 1985 Biochim. Biophys. Acta 813 117CrossRefGoogle Scholar
  2. Arnold W M and Zimmermann U 1982a Zeitschr. Naturf. 37c 908Google Scholar
  3. Arnold W M amd Zimmermann U 1982b Naturwiss. 69. 297CrossRefGoogle Scholar
  4. Berker R 1963 Handbuch der Physik VIII/2 (Berlin) 217Google Scholar
  5. Born M 1920 Zeitschr. f. Physik 1 221CrossRefGoogle Scholar
  6. DeGrooth B G, Van Gorkom H J and Meiburg R F 1980a Biochim. Biophys. Acta 589 299CrossRefGoogle Scholar
  7. DeGrooth B G, Van Gorkom H J and Meiburg R F 1980b FEBS Letters 113 21CrossRefGoogle Scholar
  8. Fuhr G. 1985 über die Rotation dielektrischer Körper in rotierenden Feldern. Dissertation, Humboldt University, BerlinGoogle Scholar
  9. Fuhr G, Glaser R and Hagedorn R 1985 Biophysical J. (in press)Google Scholar
  10. Fuhr G, Hagedorn R and Göring H 1984 studia biophysica 102 221Google Scholar
  11. Glaser R, Fuhr G and Gimsa J 1983 studia biophysica 96 11Google Scholar
  12. Hagedorn R and Fuhr G 1984 studia biophysica 102 229Google Scholar
  13. Hertz H 1881 Wiener Annalen der Physik 13. 266CrossRefGoogle Scholar
  14. Heydweiller A 1897 Verhandlungen der Deutsch. Physik. Ges. 16 32Google Scholar
  15. Holzapfel C, Vienken J and Zimmermann U 1982 J. Membrane Biol. 67 13CrossRefGoogle Scholar
  16. Hub HH, Ringsdorf H and Zimmermann U 1982 Angew. Chemie 21 134CrossRefGoogle Scholar
  17. Lampa A 1906 Wiener Berichte 115. 1659Google Scholar
  18. Lertes P 1921a Zeitschr. f. Physik 4 315CrossRefGoogle Scholar
  19. Lertes P 1921b Zeitschr. f. Physik 6 56CrossRefGoogle Scholar
  20. Pilwat G and Zimmermann U 1983 Bioelectrochem. Bioenergetics 10 155CrossRefGoogle Scholar
  21. Sauer F A and Schlögel W 1985 in: Chiabrera A, Nicolini C and Schwan H.P. (Eds.) (New York: Plenum Publ.) (in press)Google Scholar
  22. Schwan H P 1963 Physical Techniques in Biol. Research 6 323Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Roland Glaser
    • 1
  • Günter Fuhr
    • 1
  1. 1.Department of BiologyHumboldt-Universität zu BerlinGermany

Personalised recommendations