Measurement of Frequency-Dependent Impedance across Natural Cell Membranes

  • Stephen M. Ross


A property of cell membranes which is intimately bound up with electrical double layers is that of the frequency-dependent membrane impedance. The aim of this paper is to outline the basics of the Fourier transform method of measuring impedance across a spectrum of frequencies simultaneously, and to describe practical experimental techniques which the author has used in obtaining these measurements across the intact membranes of two very different kinds of cell.


Negative Capacitance Artificial Pond Water Chara Corallina Membrane Impedance White Noise Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendat, J. S., and Piersol, A. G., 1971, “Random Data: Analysis and Measurement Procedures,” Wiley-Interscience, New York.Google Scholar
  2. Cole, K. S., 1968, “Membranes, Ions and Impulses,” University of California Press, Berkeley.Google Scholar
  3. Corey, D. P. and Stevens, C. F., 1983, Science and technology of patch-recording electrodes, in: “Single-Channel Recording,” B. Sakmann and E. Neher, eds., Plenum, New York.Google Scholar
  4. Coster, H. G. L., Laver, D. R., and Smith, J. R., 1980, On a molecular basis of anaesthesia, in: “Bioelectrochemistry,” H. Keyzer and F. Gutman, eds., Plenum Press, New York.Google Scholar
  5. Coster, H. G. L., and Smith, J. R., 1974, The effect of pH on the low frequency capacitance of the membranes in Chara corallina, in: “Membrane Transport in Plants,” U. Zimmerman and J. Dainty, eds., Springer-Verlag, Heidelberg.Google Scholar
  6. Coster, H. G. L., and Smith, J. R., 1977, Low-frequency impedance of Chara corallina: simultaneous measurements of the separate plasmalemma and tonoplast capacitance and conductance, Aust. J. Plant Physiol., 4:667.Google Scholar
  7. DeFelice, L. J., 1981, “Introduction to Membrane Noise,” Plenum Press, New York.CrossRefGoogle Scholar
  8. Dixon, S. J., Aubin, J. E., and Dainty, J., 1984, Electrophysiology of a clonal osteoblast-like cell line: evidence for the existence of a Ca2+-Activated K+ conductance, J. Membrane Biol. 80:49.CrossRefGoogle Scholar
  9. Duffieux, P. M., 1983, “The Fourier Transform and its Applications to Optics,” John Wiley & Sons, Inc., New York.Google Scholar
  10. Ferrier, J. M., 1981, Time-dependent extracellular ion transport, J. Theor. Biol. 92:363.PubMedCrossRefGoogle Scholar
  11. Ferrier, J. M., 1983, A mechanism for the regulation of ligament width based on the resonance frequency of ion concentration waves, J. Theor. Biol. 102:477.PubMedCrossRefGoogle Scholar
  12. Ferrier, J. M., Dainty, J., and Ross, S. M., 1985, Theory of negative capacitance in membrane impedance measurements, J. Membrane Biol., in press.Google Scholar
  13. Ferrier, J. M. and Lucas, W. J., 1979, Plasmalemma transport of OH- in Chara corallina. II. Further analysis of the transport system associated with OH” efflux, J. Exp. Bot. 30:705.CrossRefGoogle Scholar
  14. Fischbarg, J. and Lim, J. J., 1973, Determination of the impedance locus of rabbit corneal endothelium, Biophys. J. 13:595.PubMedCrossRefGoogle Scholar
  15. Grigoriadis, A. E., Petkovich, P. M., Ber, R., Aubin, J. E. and Heersche, J. N. M., 1985, Subclone heterogeneity in a clonally-derived osteoblastlike cell line, Bone 6:193.CrossRefGoogle Scholar
  16. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391:85.PubMedCrossRefGoogle Scholar
  17. Hope, A. B. and Walker, N. A., 1975, “The Physiology of Giant Algal Cells,” Cambridge University Press, London.Google Scholar
  18. Lipson, H., 1972, “Optical Transforms,” Academic Press, London.Google Scholar
  19. Lucas, W. J. and Ferrier, J. M., 1980, Plasmalemma transport of OH- in Chara corallina. III. Further studies on transport substrate and directionality, Plant Physiol. 66:46.PubMedCrossRefGoogle Scholar
  20. Marty, A., and Neher, E., 1983, Tight-seal whole cell recording, in: “Single-Channel Recording,” B. Sakmann and E. Neher, eds., Plenum, New York.Google Scholar
  21. Mauro, A., 1961, Anomalous impedance, a phenomenological property of time-variant resistance, Biophys. J. 1:353.PubMedCrossRefGoogle Scholar
  22. Mauro, A., Conti, F., Dodge, F. and Schor, R., 1970, Subthreshold behavior and phenomenological impedance in the squid axon, J. Gen. Physiol. 55: 497.PubMedCrossRefGoogle Scholar
  23. Otnes, R. K. and Enochson, L., 1978, “Applied Time Series Analysis. Volume I: Basic Techniques,” Wiley-Interscience, New York.Google Scholar
  24. Poussart, D., Moore, L. E., and Fishman, H. M., 1977, Ion movements and kinetics in squid axon I. complex admittance, Ann. N.Y. Acad Sci. 303: 355.PubMedGoogle Scholar
  25. Ross, S. M., 1982, NOISE: an interactive program for time series analysis of physiological data, Comp. Prog. Biomedicine 15:217.CrossRefGoogle Scholar
  26. Ross, S. M., Ferrier, J. M. and Dainty, J., 1985, Frequency-depedndent impedance in Chara corallina estimated by Fourier analysis, J. Membrane Biol., in press.Google Scholar
  27. Saito, K. and Senda, M., 1974, The electrogenic pump revealed by the external pH effect on the membrane potential of Nitella. Influence of external ions and electric current on the pH effect, Plant Cell Physiol. 15:1007.Google Scholar
  28. Sigworth, F. J., 1983, Electronic design of the patch clamp, in: “Single-Channel Recording,” B. Sakmann and E. Neher, eds., Plenum, New York.Google Scholar
  29. Spanswick, R. M., 1972, Evidence for an electrogenic pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance, Biochim. Biophys. Acta 288:73.PubMedCrossRefGoogle Scholar
  30. Theilheimer, F., 1969, A matrix version of the fast Fourier transform, IEEE Trans. Aud. Electroacoust. AU-17(2):158.CrossRefGoogle Scholar
  31. Tien, H. T., 1974, “Bilayer Lipid Membranes (BLM): Theory and Practice,” Marcel Dekker Inc., New York.Google Scholar
  32. Walker, N. A. and Smith, F. A., 1977, Circulating electric currents between acid and alkaline zones associated with HCO3- assimilation in Chara, J. Exp. Bot. 28:1190.CrossRefGoogle Scholar
  33. Williams, E. J., Johnston, R. J. and Dainty, J., 1964, The electrical resistance and capacitance of the membranes of Nitella translucens, J. Exp. Bot. 15:1.CrossRefGoogle Scholar
  34. Wills, N. and Clausen, C., 1982, Impedance properties of the rabbit descending colon, Biophys. J. 37(2, pt.2):279a.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Stephen M. Ross
    • 1
  1. 1.Medical Research Council Group in Periodontal Physiology Faculty of DentistryUniversity of TorontoTorontoCanada

Personalised recommendations