Advertisement

Electronic Properties of Electroactive Bilayer Lipid Membranes

  • H. Ti Tien
  • Jan Kutnik
  • Pawel Krysinski
  • Z. K. Lojewska

Abstract

The lipid bilayer postulated as the basic structural matrix of biological membranes is widely accepted. Experiments in the early 1960s have made direct studies of lipid bilayer possible. At present, the bilayer lipid membrane (BLM) upon suitable modification serves as a unique model for biological membranes. This paper, after a minireview, describes our recent experiments with BLMs containing TCNQ (7,7′,8,8′-tetracyano-p-quinodimethane) or TTF (tetrathiafulvalene). These doped BLMs have been investigated by a voltammetric technique which has shown that suitably modified bilayer lipid membranes can act as an electronic conductor partaking in redox reactions at membrane/solution interfaces.

Keywords

Saturated Calomel Electrode Bathing Solution Redox Couple Bilayer Lipid Membrane Acceptor Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antolini, R., Gliozzi, A., and Gorio, A., eds., 1982, Transport in Biomembranes: Model Systems and Reconstitution, Raven Press, New York.Google Scholar
  2. Bader, H., Dorn, K., Hupfer, B., and Ringsdorf, H., 1985, Adv. Polym. Sci., 64:1.CrossRefGoogle Scholar
  3. Barber, J., ed., 1979, Photosynthesis in Relation to Model Systems, Elsevier, New York, pp. 116–170.Google Scholar
  4. Bard, A. J. and Faulkner, L. R., 1980, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, Chap 3.Google Scholar
  5. Bockris, J., O’M, 1979, in: Bioelectrochemistry, H. Keyzer and F. Gutmann, eds., Plenum Press, New York, pp. 5–17.Google Scholar
  6. Blank, M., ed., 1970, Surface Chemistry of Biological Systems, Plenum Press, New York.Google Scholar
  7. Blank, M., ed., 1980, Bioeleetrochemistry: Ions, Surfaces, Membranes, Adv. Chem., Series 188, Washington, D.C.Google Scholar
  8. Blumenthal, R. and Klausner, R. D., 1982, in: Membrane Reconstitution, G. Poste and G. L. Nicholson, eds., Elsevier Biomedical Press, Amsterdam, pp. 43–82.Google Scholar
  9. Bolton, J. R. and Hall, D. O., 1979, Ann. Rev. Energy, 4:353.Google Scholar
  10. Bryce, M. R. and Murphy, L. C., 1984, Nature, 309:119.CrossRefGoogle Scholar
  11. Chan, S. I., Brudvig, G. W., Martin, C. T., and Steven, T. H., 1982, in: Electron Transport and Oxygen Utilization, C. Ho, ed., Elsevier, Amsterdam.Google Scholar
  12. Gerischer, H., 1979, Top Appl. Phys., 31:115.CrossRefGoogle Scholar
  13. Gliozzi, A. and Rolandi, R., 1984, in: Membranes and Sensory Transduction, G. Colombetti and F. Lenci, eds., Plenum Press, New York, pp. 1–68.CrossRefGoogle Scholar
  14. Hauska, G., and Orlich, G., 1980, J. Memb. Sci., 6:7.CrossRefGoogle Scholar
  15. Heineman, W. R., Kuwana, T., and Hartzell, C. R., 1972, Biochem. Biophys. Res. Commun., 49:1.PubMedCrossRefGoogle Scholar
  16. Hong, F. T., 1980, in: Bioelectrochemistry, M. Blank, ed., Adv. Chem. Ser., 188:211.Google Scholar
  17. Koryta, J., 1982, Ions, Membranes and Electrodes, Wiley, New York.Google Scholar
  18. Kreishman, G. P., Su, C-H., Anderson, W., Halsall, H. B., and Heineman, W. R., 1980, in: Bioeleetrochemistry, M. Blank, ed., ASC, Washington, D.C., pp. 169–185.Google Scholar
  19. Martonosi, A., ed., 1982, Membranes and Transport, Plenum Press, New York.Google Scholar
  20. McLaughlin, S. and Eisenberg, M., 1975, Ann. Rev. Biophys. Bioeng., 11:231.Google Scholar
  21. Metzler, D. E., 1977, Biochemistry: The Chemical Reactions of Living Cells, Academic Press, New York.Google Scholar
  22. Milazzo, G., ed., 1983, Topics in Bioelectrochemistry and Bioenergetics, Vol. 5, Wiley, New York.Google Scholar
  23. Miller, I. R., 1983, Bioeleetrochm. Bioenerg., 11:231.CrossRefGoogle Scholar
  24. Mitchell, P., 1979, Science, 206:1148.PubMedCrossRefGoogle Scholar
  25. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1963, J. Phys. Chem., 67:534.Google Scholar
  26. Ohki, S., 1976, Prog. Surf. Memb. Sci., 10: 117.Google Scholar
  27. Perlstein, J. H., 1977, Angew Chem. Int. Ed. Engl., 16:519.CrossRefGoogle Scholar
  28. Robertson, J. D., 1981, J. Cell Biol., 91:189s.Google Scholar
  29. Scott, A. C., 1977, Neurophysics, Wiley-Interscience, New York, Chap 3.Google Scholar
  30. Tabushi, I., Nishiya, T., Shimomura, M., Kunitake, T., Inokuchi, H., and Yagi, T., 1984, J. Am. Chem. Soc., 106:219.CrossRefGoogle Scholar
  31. Tien, H. T., 1968, J. Phys. Chem., 72:4512.CrossRefGoogle Scholar
  32. Tien, H. T., 1974, Bilayer Lipid Membranes (BLM): Theory and Practice, Dekker, New York.Google Scholar
  33. Tien, H. T., 1984, J. Phys. Chem., 88:3172.CrossRefGoogle Scholar
  34. Tien, H. T., 1985, Bioelectrochem. Bioenerget., 13 in press.Google Scholar
  35. Tien, H. T., 1985, Planar Bilayer Lipid Membranes in Prog. in Surface Science, 19,#3 (S. G. Davison, ed.) Pergamon Press, N. Y.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. Ti Tien
    • 1
  • Jan Kutnik
    • 1
  • Pawel Krysinski
    • 1
  • Z. K. Lojewska
    • 1
  1. 1.Membrane Biophysics Lab, Department of PhysiologyMichigan State UniversityEast LansingUSA

Personalised recommendations