Advertisement

The Effects of UV-B Irradiation on Higher Plants

  • M. Tevini
  • W. Iwanzik
  • U. Thoma
Part of the NATO Conference Series book series (NATOCS, volume 7)

Abstract

Recently it has been established that chlorofluoromethanes and other gases cause a reduction of the ozone layer. Measurements by several groups predicted a reduction of between 7.5% (NAS 1976) and more recently 16% (NAS 1979). As a consequence, a displacement of the solar spectrum to shorter wavelengths and increased intensity in the UV-B waveband (280–320 nm) are to be expected. Additionally, the intensity of the UV-B reaching the earth depends on several other parameters, e.g., position of sun, season, geographical location, height above sea level, etc., so that calculations are only valid for one particular place.

Keywords

Leaf Area Photosynthetic Active Radiation Barley Seedling Bean Seedling Lighting Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, R. and M. J. Kasperbauer. 1973. Chemical composition of tobacco leaves altered by near-ultraviolet and intensity of visible light. Plant Physiol. 51: 723–726.CrossRefGoogle Scholar
  2. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Beta vulgaris. Plant Physiol. 24: l-15.Google Scholar
  3. Basiouny, F. M., T. K. Van, and R. H. Biggs. 1978. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B. Physiol. Plan 42: 29.CrossRefGoogle Scholar
  4. Bener, P. 1968. Spectral intensity of natural ultraviolet radiation and its dependence on various parameters. In: The Biologic Effects of Ultraviolet Radiation, F. Urbach [ed.] Pergamon Press Oxford. 351–358.Google Scholar
  5. Bener, P. 1972. Approximate values intensity of natural ultraviolet radiation for different amounts of atmospheric ozone. European Research Office, US Army, London. Contrakt Number DAJA 37–68-C-1017. 4–59.Google Scholar
  6. Bogenrieder, A. and R. Klein. 1978. Die Abadngigkeit der UV-empfindlichkeit von der lichtqualität bei der Aufzucht (Lactuca sativa L.) Angewandte Botanik 52: 283–293.Google Scholar
  7. Brandle, J. R., W. F. Campbell, W. B. Sisson, and M. M. Caldwell. 1977. Net photosynthesis, electron transport capacity and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol. 60: 165–168.CrossRefGoogle Scholar
  8. Braslau, N. and J. V. Dave. 1973. Effect of aerosols on the transfer of solar energy through realistic model atmospheres. Part III: Ground level fluxes in the biologically active bands, 0.2850–0.3700 microns. IBM Research Report RC4308, IBM, Thomas J. Watson Research Center, Yorktown Heights, New York.Google Scholar
  9. Caldwell, M. M. 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs, Durham N. C., 38: 243–268.CrossRefGoogle Scholar
  10. Caldwell, M. M. 1971. Solar UV irradiation and the growth and development of higher plants. Photophysiology VI, [Giese, ed.] 131–177.Google Scholar
  11. Dave, J. V. and_P. Halpern. 1977. Effect of changes in ozone amount on the ultraviolet radiation received at sea level of a model atmosphere. In: Radiation in the Atmosphere, H.-J. Bolle [ed.] Science Press. 611.Google Scholar
  12. Esser, G. 1979. Einfluß einer nach Schadstoffimission vermehrten Einstrahling von UV-B Licht auf den Ertrag von Kulturpflanzen (FKW 22), 1. Versuchsjahr, Bericht Batelle-Institute e.V. Frankfurt, BF-R-63.575–1Google Scholar
  13. Esser, G. 1980. Einfluß einer nach Schadstoffimission vermehrten Einstrahlung von UV-B-Licht auf Kulturpflanzen, 2. Versuchsjahr. Bericht Batelle Institut e.V. Frankfurt, BF-R-63.984-IGoogle Scholar
  14. Fox, F. M. and M. M. Caldwell. 1978. Competitive interaction in plant populations exposed to supplementary ultraviolet-0 radiation. Oecologia (Berl.) 36: 173–190.Google Scholar
  15. Green, A.E.S., K. R. Cross, and L. A. Smith. 1980. Improved analytical characterization of ultraviolet skylight. Photochem. Photobiol. 31: 59–65.CrossRefGoogle Scholar
  16. Green, A.E.S., T. Sawada, and E. P. Shettle. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiol. 19: 251–259.CrossRefGoogle Scholar
  17. Jagger, J. and R. S. Stafford. 1962. Biological and physical ranges of photoprotection from ultraviolet damage in micro-organisms. Photochem. Photobiol. 1: 245–257.CrossRefGoogle Scholar
  18. Klein, R. M., P. C. Edsall, and A. C. Gentile. 1965. Effects of near ultraviolet and green radiations on plant growth. Plant Physiol. 40: 903–906.CrossRefGoogle Scholar
  19. Klein, R. M. 1978. Plant and near ultraviolet radiation. Bot. Rev. 44: 1–127.CrossRefGoogle Scholar
  20. Krizek, D. T. 1975. Influence of ultraviolet radiation on germination and early seedling growth. Physiol. Plant 34: 182–186.CrossRefGoogle Scholar
  21. Lindoo, S. J. and M. M. Caldwell. 1978. UV-B radiation induced inhibition of leaf expansion and promotion of anthocyanin production. Plant Physiol. 61: 278.CrossRefGoogle Scholar
  22. Lowry, 0. H., N. T. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the Folin Phenol Reagent. J. Biol. Chem. 193: 265–275.Google Scholar
  23. Metcalfe, L. D., A. A. Schmitz, and J. R. Pelka. 1966. Rapid preparation of fatty acid methyl esters for gaschromatography analysis. Analyt. Chem. 38: 514–515.Google Scholar
  24. NASA Reference Publication 1010. Aug. 1977. Chlorofluoromethanes and the Stratosphere. R. Hudson [ed.] NASA Inform. Office.Google Scholar
  25. NAS, Committee on Impacts on Stratospheric Change et al. 1979. In: Protection against Depletion of Stratospheric ozone by chlorofluorocarbons. p. 62, National Academy of Sciences, Washington, D. C.Google Scholar
  26. Pirschle, K. 1941. Weiter Beobachtungen über den Einfluß von langwelliger und mittelwelliger UV-Strahlung auf höhere Pflanzen, besonders polyploide und hochalpine Formen (Stellaria, Epilobium, Arenaria, Silene). Biol. Zentralblatt 61: 452–473.Google Scholar
  27. Robberecht, R. and M. M. Caldwell. 1978. Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet radiation induced injury. Oecología 32: 277–287.CrossRefGoogle Scholar
  28. Schulze, R. and F. Kasten. 1975. Der Einfluß der Ozonschicht der Atmosphäre auf die biologisch wirksame Ultraviolettstrahlung an der Erdoberfläche. Strahlentherapie 150: 219–226.Google Scholar
  29. Semeniuk, P. and R. N. Stewart. 1979. Seasonal effect of UV-B-Radiation on poinsettia cultivars. J. Amer. Soc. Hort. Sci. 104: 246–248.Google Scholar
  30. Siffermann-Harms, D. 1977. The xanthophyll cycle in higher plants. In: Lipids and Lipid Polymers in Higher Plants, M. Tevini and H. K. Lichtenthaler [eds.] Springer New York-Heidelberg. 218–229.Google Scholar
  31. Sisson, W. B. and M. M. Caldwell. 1976. Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (288 to 315) nanometers simulating a reduced atmospheric ozone column. Plant Physiol. 58: 563–568.CrossRefGoogle Scholar
  32. Sisson, W. B. and M. M. Caldwell. 1977. Atmospheric ozone depletion: reduction of photosynthesis and growth of a sensitive higher plant exposed to enhanced UV-B radiation. J. Exp. Bot. 28: 691–705.Google Scholar
  33. Teramura, A. H. 1980. Effects of ultraviolet-B irradiances on soybean. I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol. Plant 4~8: 333–339.Google Scholar
  34. Teramura, A. H. 1980. Effects of ultraviolet-B irradiances on soybean. II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiol. 65: 483–488.CrossRefGoogle Scholar
  35. Teramura, A. H., S. V. Kossuth, and R. H. Biggs. 1978. Effects of UV-B-enhancement under contrasting PAR growth regimes on NCE, dark respiration, and growth in soybeans. Plant Physiol. 61: 74.Google Scholar
  36. Tevini, M. 1976. Veränderungen der Glyko-und Phospholipidgehalte während der Blattvergilbung. Planta (Berl.) 128: 167–171.CrossRefGoogle Scholar
  37. Tevini, M., W. Iwanzik and D. Steinmoller. 1979. Die Wirkung von UV-B auf den Lipid-metabolismus von Nutzpflanzen. Kurzfassung. Arbeitstagung Pflanzliche Lipide, 5.-6. 10, Köln, Botanisches Institut.Google Scholar
  38. Tevini, M. and W. Iwanzik. 1980. The effects of UV-B-irradiation on Plants. Abstract 2nd Congress F.E.S.P.P. 27th July to 1st August. Santiago de Compostella, Spain.Google Scholar
  39. Van, T. K. and L. A. Garrard. 1976. Effect of UV-B radiation on net photosynthesis of some C3 and C4 plants. Soil and Crop Science Society of Florida Proceedings 35. 1–3.Google Scholar
  40. Vu, C. V., L. H. Allen, and L. A. Garrard. 1978. Effects of supplemental ultraviolet radiation (UV-B) on growth of some agronomic crop plants. Soil and Crop Science Society of Florida, Proceedings, Vol. 38, 59–63.Google Scholar
  41. Wellmann, E. 1971. Phytochrome- Mediated Falvone Gylcoside synthesis in cell suspension cultures of Petroselinum Hortense after preirradiation with ultraviolet light. Planta 101: 283–286.CrossRefGoogle Scholar
  42. Ziegler, R. and K. Egle. 1965. Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Öberprüfung der spektralphotometrischen Chlorophyllbestimmung. Beitr. Biol. Pflanzen 41: 11–63.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • M. Tevini
    • 1
  • W. Iwanzik
    • 1
  • U. Thoma
    • 1
  1. 1.Botanical Institute IIUniversity of KarlsruheGermany

Personalised recommendations