Effects of UV-B Radiation on Thalassiosira Pseudonana: A Preliminary Study

  • M. L. Geiger
  • D. R. Norris
  • J. H. Blatt
  • R. D. Petrilla
Part of the NATO Conference Series book series (NATOCS, volume 7)


Effects of differing levels of ultraviolet-B radiation on cell concentrations, maximum specific growth rates, and pigment content of the diatom Thalassiosira pseudonana were investigated. Increased UV-B compared to the base UV-B level (intended to simulate the natural level of UV-B present in the environment) tended to show detrimental effects in all parameters. When compared to our normal culture conditions (UV-B excluded), even the base level of UV-B radiation showed detrimental effects in all parameters except chlorophyll a concentrations, the only tested parameter which increased with the addition of UV-B radiation.


Maximum Specific Growth Rate Normal Culture Condition Solar Ultraviolet Radiation Thalassiosira Pseudonana Filter Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caldwell, M. M. and D. S. Nachtwey. 1975. Expected changes in solar UV radiation. In: Grobecker, A. J. [ed.]. Impacts of Climatic Change on the Biosphere. CIAP Monogr. 5 (DOT-TST-75–55), Part 1: Ultraviolet Effects. Department of Transportation, Washington, D. C. 1. 4–1. 10.Google Scholar
  2. Calkins, J. and T. Thordardottir. 1980. The ecological significance of solar UV radiation on aquatic organisms. Nature 283: 563–566.ADSCrossRefGoogle Scholar
  3. Clayton, R. K. 1977. Light and living matter. Vol. 2 Kreiger Publishing Company, New York.Google Scholar
  4. Eppley, R. W. and J.D.H. Strickland. 1968. Kinetics of marine phytoplankton growth. In: Droop, M. R. and E. J. F. Wood [eds.]. Advances in Microbiology of the sea. Academic Press, New York. 23–62.Google Scholar
  5. Halldal, Per and 0rn Taube. 1972. Ultraviolet action and photoreactivation in algae. In: A. C. Giese [ed.], Photo physiology, Vol. 7. Academic Press, New York. 163–188.Google Scholar
  6. Jerlov, N. G. 1976. Mar. Opt. Elsevier Scientific Publishing Company.Google Scholar
  7. Lorenzen, C. J. 1979. Ultraviolet radiation and phyto-plankton photosynthesis. Limnol. Oceanogr. 24: 1117–1120.CrossRefGoogle Scholar
  8. Parsons, T. and M. Takahaski. 1973. Biological oceano- graphic processes. Pergamon Press, New York.Google Scholar
  9. Sisson, W. B. and M. M. Caldwell. 1975. Lamp/filter systems for simulation of solar UV irradiance under reduced atmospheric ozone. Photochem. Photobiol. 21: 453–456.CrossRefGoogle Scholar
  10. Standard methods for the examination of water and waste water (Fourteenth edition). 1975. American Public Health Association, Washington, D. C.Google Scholar
  11. Thomson, B. E., R. C. Worrest, and H. VanDyke. 1980. The growth response of an estuarine diatom (Melosira nummuloides [Dillw.] Ag.) to UV-B (280–320 nm) radiation. Estuaries (1): 69–72.Google Scholar
  12. Westinghouse Corp. 1977. Product Information. Atlanta, Georgia.Google Scholar
  13. Worrest, R. C., H. VanDyke, and B. E. Thomson. 1978. Impact of enhanced simulated solar ultraviolet radiation upon a marine community. Photochem. Photobiol. 22: 471–478.CrossRefGoogle Scholar
  14. Yentsch, C. S. and R. W. Lee. 1966. A study of photosynthetic light reactions and a new interpretation of sun and shade phytoplankton. J. of Mar. Res. 24: 319–337.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • M. L. Geiger
    • 1
  • D. R. Norris
    • 1
  • J. H. Blatt
    • 2
  • R. D. Petrilla
    • 1
  1. 1.Department of Oceanography and Ocean EngineeringFlorida Institute of TechnologyMelbourneUSA
  2. 2.Department of Physics and Space SciencesFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations