Advertisement

The Amelioration of UV-B Effects on Productivity by Visible Radiation

  • Alan H. Teramura
Part of the NATO Conference Series book series (NATOCS, volume 7)

Abstract

Ultraviolet radiation is strongly absorbed by proteins and nucleic acids, and therefore has important photobiological consequences (Caldwell 1971; Klein 1978; NAS 1979). The principal attenuator of solar UV radiation passing through the earth’s atmosphere is a thin layer of stratospheric ozone, which effectively absorbs short wavelength UV and sets the lower wavelength limit reaching the earth’s surface at approximately 290 nm (Koller 1965). Therefore, the naturally occurring portion of the UV spectrum on the surface of the earth is in the UV-B (290–320 nm) and UV-A (320–380 nm) regions, and does not contain the highly actinic UV-C (200–290 nm) waveband. Although the middle portion of the UV spectrum accounts for only 3–5% of the total radiation penetrating the atmosphere, its energy level is sufficient to have a disproportionately large biological significance.

Keywords

Stratospheric Ozone Longe Wavelength Radiation Active Photon Flux Stratospheric Ozone Concentration Lower Wavelength Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartholic, J. F., L. H. Halsey, and R. H. Biggs. 1974. Effects of UV radiation on agricultural productivity. Third Conference onCIAP (Feb. 1974), U.S. D.O.T., Wash., Do C. 498–504.Google Scholar
  2. Brandie, J. R., W. F. Campbell, W. B. Sisson and M. M. Caldwell. 1977. Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol. 60: 165–169.CrossRefGoogle Scholar
  3. Caldwell, M. M. 1971. Solar UV irradiance and the growth and development of higher plants. In Photophysiology [Giese, A. C.ed], Vol. 6:131–177. Academic Press, NY.Google Scholar
  4. Caldwell, M. M. 1980. Plant life and ultraviolet radiation: some perspective in the history of the earth’s UV climate. BioScience 29: 520–525.Google Scholar
  5. Cicerone, R. J., R. S. Stolarski, and S. Walters. 1974. Stratospheric ozone destruction by man-made chlorofluoromethanes. Science 185: 1165–1167.ADSCrossRefGoogle Scholar
  6. Damkaer, D. M., D. B. Dey, G. A. Heron, and E. F. Prentice 1980. Effects of UV-B radiation on near-surface zoo-plankton of Puget Sound. Oecologia (Berl.) 44: 149–158.CrossRefGoogle Scholar
  7. Gaastra, P. 1959. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Med. Landbouwh. Wageningen,59: 1–68.Google Scholar
  8. Hudson, R. D. and E. I. Reed. 1979. The stratosphere: present and future. Chlorofluoromethanes and the stratosphere. NASA Ref. Publ. 1049. Sci. and Techn. Info. Serv., Springfield, VA.Google Scholar
  9. Hunter, J. R., J. H. Taylor, and H. G. Moser. 1979. Effect of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mordax, and the pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem. Photobiol. 29: 325–338.CrossRefGoogle Scholar
  10. Jagger, J. 1964. Photoreactivation and photoprotection. Photochem. Photobiol. 3: 451–461.CrossRefGoogle Scholar
  11. Karanas, J. J., H. VanDyke, and R. C. Worrest. 1979. Midultraviolet (UV-B) sensitivity of Arcartia clausii Giesbrecht (Copepoda). Limnol. Oceanogr. 24: 1104–1116.CrossRefGoogle Scholar
  12. Klein, R. M. 1978. Plants and near-ultraviolet radiation. Bot. Rev. 44: 1–127.Google Scholar
  13. Klein, R. M., P. C. Edsall, and A. C. Gentile. 1965. Effects of near ultraviolet and green radiations on plant growth. Plant Physiol. 40: 903–906.CrossRefGoogle Scholar
  14. Koller, L. R. 1965. Ultraviolet Radiation. John Wiley and Sons Inc., N. Y.Google Scholar
  15. McConnell, J. C. and H. I. Schiff. 1978. Methyl chloroform: Impact on stratospheric ozone. Science 199: 174–177.ADSCrossRefGoogle Scholar
  16. McLeod, G. C. and J. Kanwisher. 1962. The quantum efficiency of photosynthesis in ultraviolet light. Physiol. Plant. 15: 581–586.CrossRefGoogle Scholar
  17. Molina, M. J. and F. S. Rowland. 1974. Stratospheric sink for chlorofluormethanes: chlorine atom-catalysed destruction of ozone. Nature 249: 810–812.ADSCrossRefGoogle Scholar
  18. National Academy of Sciences. 1979. Protection Against Depletion of Stratospheric Ozone by Chlorofluorocarbons. J. W. Tukey and M. S. Peters, Chairmen, Office of Publ., NAS, Washington, D. C.Google Scholar
  19. Rupert, C. S. 1975. Enzymatic photoreactivation: Overview. In P. C. Hanawalt and R. B. Setlow [eds.] Molecular Mechanisms for Repair of DNA. Basic Life Sciences, Vol. 5A, 73–87, Plenum Press, N. Y.CrossRefGoogle Scholar
  20. Semeniuk, P. and R. N. Stewart. 1979. Comparative sensitivity of cultivars of coleus to increased UV-B radiation. J. Amer. Soc. Hort. Sci. 104: 471–474.Google Scholar
  21. Semeniuk, P. and R. W. Goth. 1980. Effects of ultraviolet irradiation on local lesion development of potato virus S on Chenopodium quinoa ‘Valdivia’ leaves. Environ. and Exp. Bot. 20: 95–98.CrossRefGoogle Scholar
  22. Setlow, R. B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc. Nat. Acad. Sci. ( USA ) 71: 3363–3366.ADSCrossRefGoogle Scholar
  23. Sisson, W. B. and M. M. Caldwell. 1976. Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (288 to 315 nano-meters) simulating a reduced atmospheric ozone column. Plant Physiol. 58: 563–568.CrossRefGoogle Scholar
  24. Teramura, A. H. 1980. Effects of ultraviolet-B irradiances on soybean. I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol. Plant. 48: 333–339.CrossRefGoogle Scholar
  25. Teramura, A. H., H. Biggs, and S. Kossuth. 1980. Effects of ultraviolet-B irradiances on soybeans. II. Interactions between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiol. 65:, 483–488.CrossRefGoogle Scholar
  26. Thomson, B. E., R. C. Worrest, and H. Van Dyke. 1980. The growth response of an estuarine diatom (Melosira nummuloides [Dillw.] Ag.) to UV-B (290–320 nm) radiation. Estuaries 3: 69–72.CrossRefGoogle Scholar
  27. Van, T. K., L. A. Garrard, and S. H. West. 1976. Effects of UV-B radiation on net photosynthesis of some crop plants. Crop Sci. 16: 715–718.CrossRefGoogle Scholar
  28. Van, T. K., L. A. Garrard, and S. H. West. 1977. Effects of 298-nm radiation on photosynthetic reactions of leaf discs and chloroplast preparations of some crop species. Environ. and Exp. Bot.17: 107–112.CrossRefGoogle Scholar
  29. Vu, C. V. Allen, Jr., L. H. and L. A. Garrard. 1978. Effects of supplemental ultraviolet radiation (UV-B) on growth of some agronomic crop plants. Soil and Crop Sci. Soc. Fl. 38: 59–63.Google Scholar
  30. Worrest, R. C., D. L. Brooker, and H. Van Dyke. 1980. Results of a primary productivity study as affected by the type of glass in the culture bottles. Limnol. Oceanogr. 25: 360–364.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alan H. Teramura
    • 1
  1. 1.Department of BotanyUniversity of MarylandCollege ParkUSA

Personalised recommendations