Yellow Substance in the Sea

  • N. K. Højerslev
Part of the NATO Conference Series book series (NATOCS, volume 7)


The break-down processes of plankton and detritus in the marine environment cause no appreciable in situ production of yellow substance. The amount of yellow substance is small and approximately the same in oligotrophic and eutrophic open oceanic areas.

In coastal areas, where it is dependent on river run-off and salinity, yellow substance is highly variable.

For both oceanic and coastal waters, yellow substance is not correlated with suspended organic matter and temperature.

Yellow substance and its fluorescent components are stable within certain salinity intervals. For this reason they can be used together with conventional temperature and salinity (T, S) analysis for determination of the mixing between different coastal water types. At salinities in the vicinity of 35 o/o o the amount of yellow substance and the fluorescent components fall abruptly with increasing salinity.


German Bight Faroe Island Solar Elevation Fluorescent Component Yellow Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon. 1964. Committee on Radiant Energy in the Sea. Standard Terminology on Optics of the Sea. [Ed. N. G. Jerlov, IAPSO (IAPO) publication office, Paris.Google Scholar
  2. Armstrong, F.A. J. and G. T. Boalch. 1961. Ultraviolet absorption of sea water and its volatile components; In: Symposium on Radiant Energy in the Sea, LEd. N. G. Jerlov. IUGG Monograph (10).Google Scholar
  3. Bladh, J. O. and S. Bj∅rn-Rasmussen. 1978. Hydrografiska och växt-planktologiska undersökningar vid Skaneoch Blekingekusterna, 1970–75, resp. 1972–75. Medd. Havfiskelab. Lysekil, Gothenburg. 240.Google Scholar
  4. Bricaud, A., A. Morel and L. Prieur, 1979. In: Symposium on Radiant Energy in the Sea. IUGG. IAPSO programme.Google Scholar
  5. Calkins, J. 1975. Measurements of the penetration of solar UV-B into various natural waters. In: Climatic Impact Assessment Programme, Monograph 5, US Department of Transportation, Washington, D.C.Google Scholar
  6. Duursma, E. K. 1974. The flourescence of dissolved organic matter in the sea. In: Optical Aspects of Oceanography: 237–256. [Eds. N. G. Jerlov and E. Steemann Nielsen, Academic Press, New York.Google Scholar
  7. Gershun, A. 1936. 0 fotometri i mutnykk sredin. Tr. GoE Oceanogr. Inst. llGoogle Scholar
  8. Gordon, H. R., O. B. Brown and M. M. Jacobs. 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Appl. Opt. 14: 417–427.Google Scholar
  9. Hill, H. W. 1973. Currents and water masses. In: The North Sea [Ed. E. D. Goldberg] North Sea Science. MIT Press: 18–42.Google Scholar
  10. H∅jerslev, N. K. 1971. Tyndall and fluorescence measurements in Danish and Norwegian waters related to dynamical features. Rep. Inst. Phys. Oceanogr. University of Copenhagen. 16.Google Scholar
  11. H∅jerslev, N. K. 1974a. Inherent and apparent optical properties of the Baltic. Rep. Inst. Phys. Oceanogr. University of Copenhagen. 23.Google Scholar
  12. H∅jerslev, N. K. 1974b. Daylight measurements for photosynthetic studies in the Western Mediterranean. Rep. Inst. Phys. Oceanogr., University of Copenhagen. 26.Google Scholar
  13. H∅jerslev, N. K. 1977a. Inherent and apparent optical properties of the North Sea, “Fladen Ground Experiment - FLEX 75”, Rep. Inst. Phys. Oceanogr., University of Copenhagen. 32.Google Scholar
  14. H∅jerslev, N. K. 1977b. Inherent and apparent optical properties of Icelandic waters. Bjarni Saemundsson Overflow 73, Rep. Inst. Phys. Oceanogr., University of Copenhagen. 3 (ICES Overflow 73 contr. no. 34).Google Scholar
  15. H∅jerslev, N. K. 1978. Inherent and apparent optical properties of the North Sea. Fladen Ground Experiment FLEX 76. In: SFB [Ed.], FT,FX-Atlas, Hamburg.Google Scholar
  16. Jerlov, N. G. 1955. Factors influencing the transparency of the Baltic Waters. Medd. Oceanogr. Inst., Gothenburg. 25.Google Scholar
  17. Jerlov, N. G. 1961. Optical measurements in the Eastern North Atlantic. Medd. Oceanogr. Inst., Gothenburg. 30: 1–40.Google Scholar
  18. Jerlov, N. G. and K. Nyg.rd. 1969. A quanta and energy meter for photosynthetic studies. Rep. Inst. Oceanogr. University of Copenhagen. 10.Google Scholar
  19. Jerlov, Ne G. 1976. Marine Optics. Elsevier Oceanogr. Series, Amsterdam, 2nd ed.Google Scholar
  20. Kalle, K. 1937. Meereskundliche chemische Untersuchungen mit Hilfe des Zeisschen Pulfrich Photometers, VI, Mitt. Die Bestimmung des Nitrats und des GelBstoffes. Ann. Hydr. u. Marit. Meteorol: 276–282.Google Scholar
  21. Kalle, K. 1949. Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meeresbusen. Deutsch. Hydr. Z.2: 117–124.Google Scholar
  22. Kalle, K. 1961. What do we know about Gelbstoff. In: Symposium on Radiant Energy in the Sea. [Ed. N. G. Jerlov] IUGG Monograph (10)Google Scholar
  23. Kullenberg, G. ana K. Nygard. 1971. Fluorescence measurements in the sea. Rep. Inst. Phys. Oceanogr. University of Copenhagen. 15.Google Scholar
  24. Lenoble, J. 1956a. L’absorption du rayonnement ultraviolet par les ions présents dans la mer. Rev. Opt.35:526Google Scholar
  25. Lenoble, J. 1956b. Sur le role des principaux sels dans l’absorption ultraviolet de l’eau de mer. Compt. Rend. 242: 806–808.Google Scholar
  26. Lundgren, B. and N. K. Hjerslev. 1971. Daylight measurements in the Sargasso Sea - Results from the “DANA” Expedition, January-April 1966. Rep. Inst. Phys. Oceanogr. University of Copenhagen. 14.Google Scholar
  27. Lundgren, B. 1976. Spectral transmittance measurements in the Baltic. Rep. Inst. Phys. Oceanogr. University of Copenhagen. 30.Google Scholar
  28. Malmberg, S. Aa. 1964. Transparency measurements in Skagerak. Medd. Oceanogr. Inst. Gothenburg. 31.Google Scholar
  29. Nyquist, G. 1979. Investigation of some optical properties of sea water with special reference to lignin sulfonates and humic substances. Thesis Dep. Anal. Mar. Chem., Gothenburg.Google Scholar
  30. Robinson, N. 1966. Solar Radiation. Elsevier, Amsterdam. Sieburth, J. McN. and A. Jensen. 1969. Studies on algalGoogle Scholar
  31. substances in the sea. II. The formation of Gelbstoff (humic material) by exudates of phaephyta. J. Exp. Mar. Biol. Ecol. 3:275-289.Google Scholar
  32. Skopintsev, B. A. 1971. Recent advances in the study of organic matter in oceans. Okeanologiya. II, No. 6: 775–789.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • N. K. Højerslev
    • 1
  1. 1.Institute of Physical OceanographyUniversity of CopenhagenCopenhagen N.Denmark

Personalised recommendations