UV-B Reaching the Surface

  • Alex E. S. Green
  • P. F. Schippnick
Part of the NATO Conference Series book series (NATOCS, volume 7)


New physical inputs are summarized and placed in analytic forms suitable for calculations of the ultraviolet spectral irradiance reaching the ground. These include (a) recent values of the extraterrestrial solar spectral irradiance based upon the work of Heath et al.; (b) improved analytic characterizations of ozone attenuation coefficients; (c) an improved equation for the Rayleigh optical depth based upon the work of Frohlich and Shaw; and (d) a detailed characterization of aerosol extinction coefficients for various wavelengths and relative humidities based upon the recent work of Shettle and Fenn. In addition, we refine the ratio method of Green, Cross and Smith for characterizing the diffuse spectral irradiance to provide a better interpolation formula between the numerical output of the models of Dave, Braslau and Halpern. Applications of the work are described.


Ozone Absorption Optical Depth Aerosol Optical Depth Total Ozone Solar Zenith Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, K., R. C. Smith and A. E. S. Green. 1980. Middle ultraviolet radiation reaching the ocean surface. Photochem. and Photobiol. 32: 367–374.CrossRefGoogle Scholar
  2. Bass, A. 1980. Personal communication.Google Scholar
  3. Bener, P. 1963. The diurnal and annual variations of the spectral intensity of ultraviolet sky and global radiation on cloudless days at Davos, 1590 m a.s.l. AFCRL, Contract AF 61 (052)-618. Technical Note No. 2, January.Google Scholar
  4. Bener, P. 1970. Measured and theoretical values of the spectral intensity of ultraviolet zenith radiation and direct solar radiation at 316, 1580 and 2818 m.a.s.l, AFCRL, Contract F 61052–67-C-0029, July.Google Scholar
  5. Bener, P. 1970. Solar intensity and intensity and polarization if sky radiation for 347.0, 488.0 and 533.5 nm at selected points along the sun’s vertical and other meridians measured at 2818 m a.s.1., AFCRL, Contract DAJA 37–68-C-1017, August.Google Scholar
  6. Braslau, N. and J. V. Dave. 1973. Effect of aerosols on the transfer of solar energy through realistic model atmospheres, Part III: Ground level fluxes in the biologically active bands,.285-.370 microns, IBM Research Report, TC 4308.Google Scholar
  7. Borkowski, J., A. T. Chai, T. Mo, and A.E.S. Green. 1977. Cloud effects on middle ultraviolet globalradiation. Acta Geophys. Pol. 25 (4): 287–301.Google Scholar
  8. Caldwell, M. 1976. Personal communication.Google Scholar
  9. Dave, J. V. and P. M. Furukawa. 1966. Scattered radiation in the ozone absorption bands at selected levels of a terrestrial Rayleigh atmosphere. Meteor. Monographs. 2. No. 29, 353 pp.Google Scholar
  10. Flowers, E. C., R. A. McCormick and K. R. Kurfis. 1969. Atmospheric turbidity over the United States. 1961–1966. J. App. Meteor. 8: 955–962.Google Scholar
  11. Frohlich, C. and G. E. Shaw. 1980. New determination of Rayleigh scattering in the terrestrial atmosphere. App. Opt. 19 (11): 1773–1775.ADSGoogle Scholar
  12. Green, A.E.S., K. R. Cross and L. A. Smith. 1980. Improved analytic characterization of ultraviolet skylight. Photochem. and Photobiol.: 31 59–65.CrossRefGoogle Scholar
  13. Green, A.E.S. and T. Mo. 1974. An epidemiological index for skin cancer incidence. Proceedings ofthe 3rd Conference on CIAP, DOT-TSC-OST-74–15, 518–522.Google Scholar
  14. Green, A.E.S., T. Mo and J. H. Miller. 1974. A study of solar erythema radiation doses. Photochem. and Photobiol. 20: 473.CrossRefGoogle Scholar
  15. Green, A.E.S., T. Sawada and E. P. Shettle. 1974. The middle ultraviolet reaching the ground. Photochem. and Photobiol. 12: 351.Google Scholar
  16. Green, A.E.S. and J. D. Spinhirne. 1978. Cloud effects on UV photoclimatology in Proceedings of the Twelfth International Symposium on Remote Sensing of Environment, April 20–26, Manila, Philippines.Google Scholar
  17. Green, A.E.S. and J. D. Martin. 1966. A generalized Chapman function, Chapter 7. In: Green, A.E.S. (ed.) The Middle Ultraviolet - Its Science and Technology, J. Wiley.Google Scholar
  18. Heath, D. F., A. I. Krueger, H. A. Roeder and B. D. Henderson. 1975. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Opt. Eng. 14: 323.Google Scholar
  19. Heath, D. and H. W. Park. 1980. Amer. Geophys. Union Meeting, Toronto, personal communication.Google Scholar
  20. Inn, E. C. T. and Y. Tanaka. 1953. Absorption coeffi-Google Scholar
  21. cient of ozone in the ultraviolet and visible regions. J. Opt. Soc. Am., 43(10):87O-873.Google Scholar
  22. Johnson, F. S., T. Mo and A.E.S. Green. 1976. Average latitudinal variation in ultraviolet radiation at the earth’s surface. Photochem. and Photobiol. 23: 179CrossRefGoogle Scholar
  23. Klenk, K. F. 1980. Absorption coefficients of ozone for the backscatter experiment. App. Opt. 19: 236.ADSGoogle Scholar
  24. Kohl, J. L., W. H. Parkinson and C. A. Zapata. 1980. Solar spectral radiance and irradiance, 225.2 nm to 319.6 nm, Center for Astrophysics, No. 1289.Google Scholar
  25. Mo, T. and A.E.S. Green. 1974. A climatology of solar erythema dose. Photochem. and Photobiol. 20: 438–496.CrossRefGoogle Scholar
  26. Nack, L. M. and A.E.S. Green. 1974. Influence of clouds, haze, and smog on the middle ultraviolet reaching the ground. App. Opt. 13: 2405.ADSGoogle Scholar
  27. Penndorf, R. 1957. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µ and their applications to atmospheric optics. J. Opt. Soc. Am. 47: 176–182.Google Scholar
  28. Shettle, E. P. and R. W. Fenn. 1979. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79–0214.Google Scholar
  29. Shettle, E. P. and A.E.S. Green. 1974. Multiple scattering calculation of the middle ultraviolet reaching the ground. App. Opt. 13: (7): 1567–1581.ADSGoogle Scholar
  30. Shotkin, L. M. and J. F. Thompson, Jr. 1973. Use of an atmospheric model with aerosols to examine solar UV data. J. Atmos. Sci. 30: 1699.Google Scholar
  31. Simons, J. W., R. J. Paur, H. A. Webster, III, and E.J. Bair. 1973. Ozone ultraviolet photolysis. VI. The ultraviolet spectrum. J. Chem. Phys., 29: 311–323.Google Scholar
  32. Smith, R. C. and K. S. Baker. 1979. Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem. and Photobiol. 29: 311–323.CrossRefGoogle Scholar
  33. Smith, R. C. and K. S. Baker. Middle ultraviolet irra-diance measurements at the ocean surface (to be published).Google Scholar
  34. Spinhirne, J. D. and A.E.S. Green. 1978. Calculation of the relative influence of cloud layers on received ultraviolet and integrated solar radiation. Atmos. Environ. 12: 2449–2445.Google Scholar
  35. Vigroux, E. 1953. Contribution â l’étude experimentale de l’absorption de l’ozone. Ann. Phys. 12 (8): 709–762.Google Scholar
  36. Vigroux, E. 1967. Determination des coefficients moyensGoogle Scholar
  37. d’absorption de l’ozone en vue des observations concernant l’ozone atmospherique â l’aide du spectrometre Dobson. Ann. Phys. 14(2):209–215.Google Scholar
  38. Voiz, F. 1959. Photometer mit Selen-photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung. Arch. Meterol. Geophys Bioklimatol. 10 (1): 100–131.Google Scholar
  39. Young, A. T. 1980. Revised depolarization corrections for atmospheric extinction. Appl. Opt. 19: 3427–3428.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alex E. S. Green
    • 1
  • P. F. Schippnick
    • 1
  1. 1.Interdisciplinary Center for Aeronomy and other Atmospheric SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations