Dynamics and Thermodynamics of Lipid — Protein Interactions in Membranes

  • Garret Vanderkooi
  • John T. Bendler
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


A thermodynamic analysis of the process of protein aggregation in membranes is presented. Three factors have been identified as the principal determinants of the state of aggregation or dispersal of the intrinsic proteins in simple membranes: The entropy of mixing, the equilibrium between boundary lipid and bilayer lipid, and protein-protein interactions. The Hamaker method was used to estimate the strength of the nonbonded dispersion energy between proteins embedded in lipid. It was found that this energy gives a net attractive force between the proteins and for large proteins may be several times the thermal energy, even when the proteins are separated by one or more lipid molecules. A limiting law equation for the athermal mixing of proteins and lipids in a membrane was derived using a lattice solution theory model. It is shown that the entropy of mixing varies inversely with the size of the proteins. Increasing the effective size of the proteins, as through dimerization by crosslinking agents, may induce a further nonspecific aggregation of proteins to occur, on account of the combined effect of an increased nonbonded attraction and a decreased entropy of mixing.


Bilayer Lipid Lipid Molecule Hamaker Constant Liquid Crystalline State Boundary Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Verkleij, A. J., Ververgaert, P. H. J., Van Deenen, L. L. M., and Elbers, P. F. (1972) Biochim. Biophys. Acta 288, 326–332.PubMedCrossRefGoogle Scholar
  2. 2.
    Haest, C. W. M., Verkleij, A. J., De Gier, J., Scheek, R., Ververgaert, P. H. J., and Van Deenen, L. L. M. (1974) Biochim. Biophys. Acta 356, 17–26PubMedCrossRefGoogle Scholar
  3. 3.
    Hong, K., and Hubbell, W. L. (1973) Biochemistry 12, 4517–4523.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, Y. S., and Hubbell, W. L. (1973) Exp. Eye Res. 17, 517–532.PubMedCrossRefGoogle Scholar
  5. 5.
    Kleemann, W., Grant, C. W. M., and McConnell, H. M. (1974) J. Supramol. Struct. 2, 609–616.Google Scholar
  6. 6.
    Kleemann,W., and McConnell, H. M. (1976) Biochim. Biophys. Acta 419, 206–222.Google Scholar
  7. 7.
    Wang, J. L., Gunther, G. R., and Edelman, G. M. (1975) J. Cell Biol. 66, 128–144.Google Scholar
  8. 8.
    DePetris, S. (1975) J. Cell Biol. 65, 123–146.CrossRefGoogle Scholar
  9. 9.
    Vanderkooi, G. (1974) Biochim. Biophys. Acta 344, 307–345.PubMedGoogle Scholar
  10. 10.
    Vanderkooi, G. (1975) Int. J. Quantum Chem: Quantum Biology Symp. No. 2, 209–219.Google Scholar
  11. 11.
    Trudell, J. R., Hubbell, W. L., and Cohen, E. N. (1973) Biochim. Biophys. Acta 291, 321–327.PubMedCrossRefGoogle Scholar
  12. 12.
    Seeman, P. (1974) Experientia 30, 759–760.PubMedCrossRefGoogle Scholar
  13. 13.
    Jost, P. C., Griffith, 0. H., Capaldi, R. A., and Vanderkooi, G. (1973) Proc. Nat. Acad. Sci. USA 70, 480–484.Google Scholar
  14. 14.
    Ladbrooke, B. D., and Chapman, D. (1969) Chem. Phys. Lipids 3, 304–367.PubMedCrossRefGoogle Scholar
  15. 15.
    Vanderkooi, G., Senior, A. E., Capaldi, R. A., and Hayashi, H. (1972) Biochim. Biophys. Acta 274, 38–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Blaurock, A. E., and Stoeckenius, W. (1971) Nature New Biol. 233, 152–154.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamaker, H. C. (1937) Physica 4, 1058–1072.CrossRefGoogle Scholar
  18. 18.
    Parsegian, V. A., and Ninham, B. W. (1971) J. Col. Interface Sci. 27, 332–341.CrossRefGoogle Scholar
  19. 19.
    Flory, P. J. (1953) Principles of Polymer Chemistry, pp. 497–511, Cornell University Press, Ithaca.Google Scholar
  20. 20.
    Vold, M. J. (1961) J. Colloid Sci. 16, 1–12.CrossRefGoogle Scholar
  21. 21.
    Osmond, D. W. J., Vincent, B., and Waite, F. A. (1973) J. Col. Interface Sci. 42, 262–269.CrossRefGoogle Scholar
  22. 22.
    Vold, M. J. (1954) J. Colloid Sci. 9, 451–459.CrossRefGoogle Scholar
  23. 23.
    Huang, C. H., and Charlton, J. P. (1971) J. Biol. Chem. 246, 2555–2560.Google Scholar
  24. 24.
    Cohn, E. J., and Edsall, J. T. (1943) Proteins, Amino Acids, and Peptides, p. 372, Hafner Publishing Co., New York.Google Scholar
  25. 25.
    Heller, J. (1968) Biochemistry, 7 2906–2913.PubMedCrossRefGoogle Scholar
  26. 26.
    Scott, R. A., and Scheraga, H. A. (1966) J. Chem. Phys. 45, 2091–2106Google Scholar
  27. 27.
    Momany, F. A., Carruthers, L. M., McGuire, R. F., and Scheraga, H. A. (1974) J. Phys. Chem. 78 1595–1630.CrossRefGoogle Scholar
  28. 28.
    Guggenheim, E. A. (1952) Mixtures, pp. 185–214, Clarenden Press, Oxford.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Garret Vanderkooi
    • 1
  • John T. Bendler
    • 2
  1. 1.Department of ChemistryNorthern Illinois UniversityDeKalbUSA
  2. 2.Midland Macromolecular InstituteMidlandUSA

Personalised recommendations