Energy Transduction in the Chromatophore Membrane

  • Margareta Baltscheffsky
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


In chromatophore membranes from the photosynthetic bacterium Rhodospirillum rubrum inorganic pyrophosphate (PPi), which can be formed as an alternative end product to ATP in photophosphorylation, may also be utilized as energy donor in the dark in reversed energy conversion reactions. The light-induced energy conversion is reflected in a biphasic absorbance change of endogenous membrane-bound carotenoids. Evidence is presented that the slow phase of this absorbance change is in response to the presence and activity of the ATP-synthesizing enzyme. The present widespread use of the total carotenoid absorbance change as an indicator of a transmembrane potential is discussed and questioned. Alternative interpretations are given on the basis of our findings concerning different characteristics of two phases of the total carotenoid absorbance change.


Photosynthetic Bacterium Absorbance Change Fast Phase Energy Transduction Rhodospirillum Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltscheffsky, H. and L.-V. von Stedingk. Bacterial photophosphorylation in the absence of added nucleotide. A second intermediate stage of energy transfer in light-induced formation of ATP, Biochem. Biophys. Res. Commun. 22, 722, 1966.Google Scholar
  2. Baltscheffsky, H., L.-V. von Stedingk, M.-W. Heldt and M. Klingenberg, Inorganic pyrophosphate: Formation in bacterial photophosphorylation, Science 153, 1120, 1966.PubMedCrossRefGoogle Scholar
  3. Baltscheffsky, M., Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum, Nature 216, 241, 1967.PubMedCrossRefGoogle Scholar
  4. Baltscheffsky, M., Inorganic pyrophosphate as an energy donor in photosynthetic and respiratory electron transport phosphorylation systems, Biochem. Biophys. Res. Comm. 28, 270, 1967b.CrossRefGoogle Scholar
  5. Baltscheffsky, M., Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrum chromatophores, Arch. Biochem. Biophys. 130, 646, 1969a.CrossRefGoogle Scholar
  6. Baltscheffsky, M., Reversed energy conversion reaction of bacterial photophosphorylation, Arch. Biochem. Biophys. 133, 46, 1969b.CrossRefGoogle Scholar
  7. Baltscheffsky, M., Discussion comment in Electron Transport and Energy Conservation, edited by J.M. Tager, S. Papa, E. Quagliariello and E.C. Slater, pp. 419–421, Adriatica Editrice, Bari, 1970.Google Scholar
  8. Baltscheffsky, M., Reversible energization in photosynthesis as measured with endogenous carotenoid, in Dynamics of Energy Transducing Membranes, edited by L. Ernster, R.W. Estabrook and E.C. Slater, pp. 365–376, Elsevier, Amsterdam, 1974.Google Scholar
  9. Baltscheffsky, M., H. Baltscheffsky and L.-V. von Stedingk, Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum, Brookhaven Symp. Biol. 19, 246, 1966.Google Scholar
  10. Baltscheffsky, M. and H. Baltscheffsky, Coupling and control at the cytochrome level of bacterial photosynthetic electron transport, Abstract, Wenner-Gren Symposium on Oxidation Reduction Enzymes, p. 39, Stockholm, 1970.Google Scholar
  11. Baltscheffsky, M. and H. Baltscheffsky, Coupling and control at the cytochrome level of bacterial photosynthetic electron transport, in Oxidation Reduction Enzymes, edited by A. Akes-son and A. Ehrenberg, pp. 257–262, Pergamon Press, Oxford, 1972.Google Scholar
  12. Baltscheffsky, M. and D.O. Hall, Photophosphorylation and the 518 nm absorbance change in tightly coupled chloroplasts. FEBS Letters 39, 345, 1974.PubMedCrossRefGoogle Scholar
  13. Casadio, R., A. Baccarini-Melandri, D. Zannoni and B.A. Melandri, Electrochemical proton gradient and phosphate potential in bacterial chromatophores, FEBS Letters 49, 203, 1974.PubMedCrossRefGoogle Scholar
  14. Chance, B. and M. Baltscheffsky, Carotenoid and merocyanine probes in chromatophore membranes, in Biomembranes, vol. 7, edited by H. Eisenberg, E. Katchalsky-Katzir and L.A. Manson, pp. 33–55, Plenum Press, New York, 1975.Google Scholar
  15. Girault, G. and J.M. Galmiche. Nucleotides effect on the decay kinetics of the 520 nm absorbance change in tightly coupled chloroplasts. Biochem. Biophys. Res. Commun. 68, 724, 1976.Google Scholar
  16. Guillory, R.J. and R.R. Fisher, Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores, Biochem. J. 129, 471, 1972.Google Scholar
  17. Jackson, J.B. and A.R. Crofts, The high energy state in chromatophores from Rhodopseudomonas spheroides, FEBS Letters 4, 185, 1969.PubMedCrossRefGoogle Scholar
  18. Jackson, J.B. and A.R. Crofts, The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane, Eur. J. Biochem. 18, 120, 1971.PubMedCrossRefGoogle Scholar
  19. Jackson, J.B., S. Saphon and H.T.-Witt, The extent of the stimulated electric potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas spheroides chromato-phores following short flash excitation, Biochim. Biophys. Acta, 408, 83, 1975.CrossRefGoogle Scholar
  20. Johansson, B.C.. A coupling factor from Rhodospirillum rubrum chromatophores, FEBS Letters 20, 339, 1972.PubMedCrossRefGoogle Scholar
  21. Johansson, B.C., M. Baltscheffsky and H. Baltscheffsky, Coupling factor capabilities with chromatophore fragments from Rhodospirillum rubrum in Proceedings of the II-nd International Congress on Photosynthesis Research, Stresa, 1971, edited by G. Forti, M. Avron and A. Melandri, pp. 1203–1209, Junk Publishers, The Hague, 1972.Google Scholar
  22. Jones, 0.T.G. and V.A. Saunders, Energy-linked electron transfer reactions in Rhodopseudomonas viridis, Biochim. Biophys. Acta 275, 427, 1972.CrossRefGoogle Scholar
  23. Kagawa._ Y. and E. Racker, Partial resolution of enzymes catalyzing oxidative phosphorylation X. Correlation of morphology and function in submitochondrial particles, J. Biol. Chem. 241, 2475, 1966.Google Scholar
  24. Keister, D.L. and N.J. Minton, Energy-linked reactions in photosynthetic bacteria. VI. Inorganic pyrophosphate-driven ATP synthesis in Rhodospirillum rubrum, Arch. Biochem. Biophys. 147, 330, 1971.CrossRefGoogle Scholar
  25. Keister, D.L. and N.J. Yike, Energy-linked reactions in photosynthesic bacteria. I. Succinate-linked ATP-driven NAD+ reduction by Rhodospirillum rubrum chromatophores, Arch. Biochem. Biophys. 121, 415, 1967a.Google Scholar
  26. Keister, D.L. and N.J. Yike, Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by chromatophores of Rhodospirillum rubrum, Biochemistry 6, 3847, 1967b.PubMedCrossRefGoogle Scholar
  27. Klemme, B., J.-H. Klemme and A. San Pietro, PPase, A.Pase, and photophosphorylation in chromatophores of Rhodospirillum rubrum: Inactivation by phospholipase A. Reconstitution by phospholipids, Arch. Biochem. Biophys. 144, 339, 1971.Google Scholar
  28. Lien, S. and E. Racker, Partial resolution of the enzymes catalyzing photophosphorylation, VII. Properties of silicotungstatetreated subchloroplast particles, J. Biol. Chem. 246, 4298, 1971.PubMedGoogle Scholar
  29. Löw, H. and B. Afzelius, Subunits of the chromatophore membranes in Rhodospirillum rubrum, Exp. Cell Res. 35, 431, 1965.CrossRefGoogle Scholar
  30. Melandri, B.A., E. Fabbri, E. Firstater and A. Baccarini-Melandri, Allotopic properties and energy dependent conformational changes of bacterial ATPase, in Membrane Proteins in Transport and Phosphorylation, edited by G.F. Azzone, M.E. Klingenberg, E. Quagliariello and N. Siliprandi, pp. 55–60, North-Holland, Amsterdam, 1974.Google Scholar
  31. Nishimura, M., T. Ito and B. Chance, Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of hotophosphorylation. Biochim. Biophys. Acta 59, 177, 1962.PubMedCrossRefGoogle Scholar
  32. Reed, D.W. and D. Raveed, Some properties of the ATPase from chromatophores of Rhodopseudomonas spheroides and its structural relationship to the bacteriochlorophyll proteins, Biochim. Biophys. Acta 283, 79, 1972.CrossRefGoogle Scholar
  33. Saphon, S., J.B. J.ckson,_ V. Lerbs and H.T. Witt, The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas spheroides, Biochim. Biophys. Acta 408, 58, 1975a.Google Scholar
  34. Saphon, S., J.B. Jackson and H.T. Witt, Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores, Biochim. Biophys. Acta 408, 67, 1975b.CrossRefGoogle Scholar
  35. Smith, L., M. Baltscheffsky and J.M.-Olson, Absorption spectrum changes observed on illumination of aerobic suspensions of photosynthetic bacteria, J. Biol. Chem. 235, 213, 1960.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Margareta Baltscheffsky
    • 1
  1. 1.Department of Biochemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations