Membrane Electrostatics

  • Hermann Träuble
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


Suspensions of erythrocytes and of many other cells migrate toward the anode in an electrical field, indicating that the cell membranes posess a negative net surface charge. The origin of these charges are ionizable groups like carboxylic acid and phosphoric acid attached to membrane proteins, sugars or lipids. Among the lipids carrying a net negative charge between pH 3 and 9 are cardiolipin, phosphatidylserine, phosphatidylinositol, phosphatidyl-glycerol and phosphatidic acid (cf. Gurr and James,1971). The charge-carrying lipid in the human red cell membrane is phosphatidylserine, which comprises about 15–20 per cent of the total lipids. According to Verkleijet al. (1973) this lipid resides predominantly on the inner side of the membrane, demonstrating the possibility of asymmetric charge distribution on the two membrane sides. In the central nervous tissue the main acidic lipids are cerebroside sulphate and serine phosphoglycerides (cf. London and Vossenberg, 1973). A charge density as high as one elementary charge per 100 Å2 was postulated by Hille et al. (1975) for nerve fibres in the vicinity of sodium channels.


Charge Density Divalent Cation Phosphatidic Acid Molecular Area Fluid Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, R., Theorie der Wärme, Springer Verlag, Berlin, Heidelberg, New York, 1966.Google Scholar
  2. Blume, A., Doctoral Dissertation, University of Freiburg, 1976. Cuthbert, A.W., Calcium and Cellular Function, London, 1970.Google Scholar
  3. Davies, J.T. and E.K. Rideal, Interfacial phenomena, Academic Press, New York, 1961.Google Scholar
  4. MacDonald, R.C., S.A. Simon and E. Baer, Biochemistry 15, 885, 1976. Fromherz P. and B. Masters, Biochim. Biophys. Acta 356, 270, 1974.Google Scholar
  5. Galla, H.J. and E. Sackmann, Biochim. Biophys. Acta 401, 509, 1975.CrossRefGoogle Scholar
  6. Goldstein, L., Y. Levine and E. Katchalski, Biochemistry 3, 1913, 1964.PubMedCrossRefGoogle Scholar
  7. Gurr, M.J. and A.T. James, Lipid Biochemistry: An introduction, Chapman and Hall, London, 1971.Google Scholar
  8. Harned, H.S. and B.B. Owen, The physical chemistry of electrolytic solutions, Reinhold Publ. Corp., New York, 1943.Google Scholar
  9. Hille, B., A.M. Woodhull and B.I. Shapiro, Phil. Trans. R. Soc. Lond. B. 270, 301, 1975.CrossRefGoogle Scholar
  10. Hubbard, S.C. and S. Brody, J. Biol. Chem. 250, 7173, 1975.PubMedGoogle Scholar
  11. Jacobson, K. and D. Papahadjopoulos, Biochemistry 14, 152, 1975.PubMedCrossRefGoogle Scholar
  12. Jähnig, F., Biophys. Chem., in press.Jähnig, F. and H. Träuble, in preparation.Google Scholar
  13. McLaughlin, S.G.A., G. Szabo, G. Eisenmann and S.M. Ciani, Proc. Nat. Acad. Sci. (USA) 67, 1268, 1970.CrossRefGoogle Scholar
  14. McLaughlin, S.G.A., G. Szabo and G. Eisenmann, J. Gen. Physiol. 58, 667, 1971.PubMedCrossRefGoogle Scholar
  15. Lee, A.G., Biochim. Biophys. Acta 413, 11, 1975.CrossRefGoogle Scholar
  16. London, Y. and F.G.A. Vossenberg, Biochim. Biophys. Acta 178, 478, 1973.Google Scholar
  17. Ohki, S., J. Coll. and Interface Sci. 37, 318, 1971.CrossRefGoogle Scholar
  18. Ohki, S., in: Progress in surface and membrane science, V. 10, edited by D.A. Cadenhead and J.F. Danielli, p. 117, Academic Press, New York, San Francisco, London, 1976.Google Scholar
  19. Ohnishi, S., Adv. Biophys. 8, 35, 1975.Google Scholar
  20. Overath, P., L. Thilo and H. Träuble, Trends in Biochem. Sci., in press.Google Scholar
  21. Phillips, M.C., H. Hauser and F. Paltauf, Chem. Phys. Lipids 8, 127, 1972.PubMedCrossRefGoogle Scholar
  22. Rao, Y.K., in: Phase diagrams, materials science and technology, V. I, edited by M. Alper, p. 1, Academic Press, New York and London, 1970.Google Scholar
  23. Record, M.Th., Jr., Biopolymers 5, 975 and 993, 1967.Google Scholar
  24. Shimshick, E.J. and H.M. McConnell, Biochemistry 12, 2351, 1973.PubMedCrossRefGoogle Scholar
  25. Teubner, M. and H. Träuble, in preparation.Google Scholar
  26. Träuble, H. and P. Overath, Biochim. Biophys. Acta 307, 491, 1973.Google Scholar
  27. Träuble, H. and H. Eibl, Proc. Nat. Acad. Sci. (USA) 71, 214, 1974.CrossRefGoogle Scholar
  28. Träuble, H. and H. Eibl, in: Funktional linkage in biomolecular systems, edited by F.O. Schmitt, D.M. Schneider and D.M. Crothers, p. 59, Raven Press, New York, 1975.Google Scholar
  29. Träuble, H., M. Teubner, P. Woolley and H. Eibl, Biophys. Chem., in press.Google Scholar
  30. Verkleij, D. Kaselijn, A.J., R.F.A. Zwaal, B. Roelofsen, P. Comfurius and L.L.M. van Deenen, Biochim. Biophys. Acta 323, 178, 1973.Google Scholar
  31. Verwey, E.J.W. and J.Th.G. Overbeek, Theorylity of lyo- of the stabi phobic colloids, Elsevier Publishing Co. Inc., New York,Amsterdam, London, Brussels, 1948.Google Scholar
  32. Wu, S.H. and H.M. McConnell, Biochemistry 14, 847, 1975.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Hermann Träuble
    • 1
  1. 1.Max-Planck -Institut für biophysikalische ChemieD-34 Göttingen-NikolausbergGermany

Personalised recommendations