Proton Translocation by Bacteriorhodopsin in Model Systems

  • Walther Stoeckenius
  • San-Bao Hwang
  • Juan Korenbrot
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


Bacteriorhodopsin is a rhodopsin-like pigment found in the cell membrane of halobacteria. It occurs in discrete patches with a planar hexagonal lattice structure known as the purple membrane (Oesterhelt and Stoeckenius, 1971; Blaurock and Stoeckenius, 1971). When bacteriorhodopsin absorbs light, it undergoes a rapid cyclic photoreaction during which it translocates a proton across the membrane (Lozier et al, 1975; Lozier et al, 1976). In continuous light it acts as a light-driven proton pump generating a proton gradient and membrane potential. The cells can use the energy stored in the electrochemical gradient to synthesize ATP (Oester-helt and Stoeckenius, 1973; Bogomolni et al, 1976; Danon and Stoeckenius, 1974). In intact cells it is difficult to measure parameters such as rapid absorption changes of the pigment, intracellular ion concentrations, and membrane potential, which are necessary to quantitate the light energy conversion in this system. Moreover, the energy metabolism of halobacteria has not been investigated in detail and contributions from other energy sources are difficult to evaluate. Reconstitution of the bacteriorhodopsin function in a well-characterized model system avoids most of the difficulties encountered in work with intact cells.


Lipid Vesicle Proton Acceptor Planar Film Fracture Face Soybean Lecithin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaurock, A. E. and W. Stoeckenius, Structure of the purple membrane, Nature New Biol. 233, 152, 1971.PubMedCrossRefGoogle Scholar
  2. Bogomolni, R. A., R. A. Baker, R. H. Lozier and W. Stoeckenius, Light-driven proton translocations in Halobacterium halobium,Biochim. Biophys. Acta, in press, 1976.Google Scholar
  3. Boguslaysky, L. I., A. A. Kondrashin, I. A. Kozlov, S. T. Metelsky, V. P. Skulachev and A. G. Volkov, Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes, FEBS Letters 50, 223, 1975.CrossRefGoogle Scholar
  4. Branton, D., Membrane structure, Ann. Rev. Plant Physiol. 20, 209, 1969.CrossRefGoogle Scholar
  5. Danon, A. and W. Stoeckenius, Photophosphorylation in Halobacterium halobium, Proc. Nat. Acad. Sci. USA 71, 1234, 1974.PubMedCrossRefGoogle Scholar
  6. Drachev, L. A., A. A. Jasaitis, A. D. Kaulen, A. A. Kondrashin, E. A. Liberman, I. B. Nemecek, S. A. Ostroumov, A. Yu. Semenov and V. P. Skulachev, Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature 249, 321, 1974a.PubMedCrossRefGoogle Scholar
  7. Drachev, L. A., A. D. Kaulen, S. A. Ostroumov and V. P. Skulachev, Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane, FEBS Letters 39, 43, 1974b.PubMedCrossRefGoogle Scholar
  8. Hwang, S.-B., J. I. Korenbrot and W. Stoeckenius, Light-dependent proton transport by bacteriorhodopsin incorporated in an interface film, J. Supramolecular Structure, in press, 1976.Google Scholar
  9. Kayushin, L. P. and V. P. Skulachev, Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating 4 and tpH, FEBS Letters 39, 39, 1974.PubMedCrossRefGoogle Scholar
  10. Knowles, A. F., A. Kandrach, E. Racker and H. G. Khorana, Acetyl phosphatidylethanolamine in the reconstitution of ion pumps, J. Biol. Chem. 250, 1809, 1975.PubMedGoogle Scholar
  11. Lozier, R. H., R. A. Bogomolni and W. Stoeckenius, Bacteriorhodopsin: A light-driven proton pump in Halobacterium halobium, Biophys. J. 15, 955, 1975.PubMedCrossRefGoogle Scholar
  12. Lozier, R. H., W. Niederberger, R. A. Bogomolni, S.-B. Hwang and W. Stoeckenius, Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane, Biochim. Biophys. Acta, in press, 1976.Google Scholar
  13. MacDonald, R. E. and J. K. Lanyi, Light-induced leucine transport in Halobacterium halobium envelope vesicles: A chemiosmotic system, Biochemistry 14, 2882, 1975.PubMedCrossRefGoogle Scholar
  14. Oesterhelt, D. and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biol. 233, 149, 1971.PubMedGoogle Scholar
  15. Oesterhelt, D. and W. Stoeckenius, Functions of a new photoreceptor membrane, Proc. Nat. Acad. Sci. USA 70, 2853, 1973.PubMedCrossRefGoogle Scholar
  16. Oesterhelt, D. and W. Stoeckenius, Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, in Methods in Enzymology Volume XXXI, Biomembranes Part A, ed. S. Fleischer and L. Packer, pp. 667678, Academic Press, New York-San Francisco-London, 1974.Google Scholar
  17. Parsegian, A., Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems, Nature 221, 844, 1969.PubMedCrossRefGoogle Scholar
  18. Racker, E., A new procedure for the reconstitution of biologically active phospholipid vesicles, Biochem. Biophys. Res. Commun. 55, 224, 1973.CrossRefGoogle Scholar
  19. Racker, E. and P. C. Hinkle, Effect of temperature on the function of a proton pump, J. Membrane Biol. 17, 181, 1974.CrossRefGoogle Scholar
  20. Racker, E. and W. Stoeckenius, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249, 662, 1974.PubMedGoogle Scholar
  21. Stoeckenius, W. and W. H. Kunau, Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell Biol. 38, 337, 1968.CrossRefGoogle Scholar
  22. Unwin, P. N. T. and R. Henderson, Molecular structure determination by electron microscopy of unstained crystalline specimens, J. Mol. Biol. 94, 425, 1975.PubMedCrossRefGoogle Scholar
  23. Yaguzhinsky, L. S., L. I. Boguslaysky, A. G. Volkov and A. B. Rakhmaninova, Synthesis of ATP coupled with action of membrane protonic pumps at the octane-water interface, Nature 259, 494, 1976.PubMedCrossRefGoogle Scholar
  24. Yoshida, M., N. Sone, H. Hirata, Y. Kagawa, Y. Takeuchi and K. Ohno, ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles, Biochem. Biophys. Res. Commun. 67, 1295, 1975.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Walther Stoeckenius
    • 1
  • San-Bao Hwang
    • 1
  • Juan Korenbrot
    • 1
  1. 1.Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCanada

Personalised recommendations