Incorporation of Integral Membrane Proteins into Liposomes

  • Gera D. Eytan
  • Gottfried Schatz
  • Efraim Racker
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


One of the most intriguing features of biological membranes is their asymmetry. A variety of techniques has shown that most membrane components are not randomly distributed, but specifically oriented with respect to the two membrane surfaces (1,2). In the case of the mitochondrial inner membrane, cytochromes c and cl are localized on the outer side (C-side) and the mitochondrial ATPase F1 on the inner or matrix side (M-side) of the membrane (2). Cytochrome c oxidase spans the membrane (3–5) so that some subunits of this oligomeric enzyme are situated on the outer side, some on the inner side and some in the interior of the membrane (4). We are beginning to understand how this asymmetric architecture determines the various vectorial functions of biological membranes but we know next to nothing about how this asymmetry arises in vivo. For example, it would be interesting to know to what extent the asymmetric transmembranous orientation of cytochrome oxidase is caused by an asymmetry in the enzyme itself, or by specific properties such as charge, curvature, phospholipid asymmetry or protein composition of the receptor membrane.


Cytochrome Oxidase Respiratory Control Protein Ratio Hydrophobic Protein Respiratory Control Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



respiratory control ratio






dimyristoyl phosphatidylethanolamine


mitochondrial ATPase (oligomycin-insensitive)


hydrophobic protein fraction from mitochondria required for formation of the proton channel of the transmembranous ATPase complex




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, S.J. (1974) Ann. Rev. Biochem. 43, 805–834PubMedCrossRefGoogle Scholar
  2. 2.
    Racker, E. (1970) in Essays in Biochemistry (P.N. Campbell and F. Dickens, eds.) Academic Press. Vol, 6, P. 1–22.Google Scholar
  3. 3.
    Schneider, D.L., Kagawa, Y. and Racker, E. (1972) J. Biol. Chem. 247, 4074–4079.PubMedGoogle Scholar
  4. 4.
    Eytan, G.D., Carroll, R.C., Schatz, G. and Racker, E. (1975) J. Biol. Chem. 250, 8598–8603.PubMedGoogle Scholar
  5. 5.
    Hackenbrock, C.R. and Hammon, K.M. (1975) J. Biol. Chem. 250, 9185–9197.Google Scholar
  6. 6.
    Kagawa, Y. and Racker, E. (1971) J. Biol. Chem. 246, 5477–5487.Google Scholar
  7. 7.
    Kagawa, Y., Kandrach, A. and Racker, E. (1973) J. Biol. Chem. 248, 676–684.PubMedGoogle Scholar
  8. 8.
    Ragan, C.I. and Racker, E. (1973) J. Biol. Chem. 248, 2563–2569.PubMedGoogle Scholar
  9. 9.
    Leung, K.H. and Hinkle, P.C. (1975) J. Biol. Chem. 250, 8467–8471.PubMedGoogle Scholar
  10. 10.
    Racker, E. and Kandrach, A. (1971) J. Biol. Chem. 246, 7069–7071.PubMedGoogle Scholar
  11. 11.
    Shertzer, H.G. and Racker, E. (1974) J. Biol. Chem. 249, 1320–1321.PubMedGoogle Scholar
  12. 12.
    Racker, E. and Stoeckenius, W. (1974) J. Biol. Chem. 249, 662–663.PubMedGoogle Scholar
  13. 13.
    Knowles, A.F. and Racker, E. (1975) J. Biol. Chem. 250, 3538–3544.PubMedGoogle Scholar
  14. 14.
    Racker, E. and Fisher, L.W. (1975) Biochem. Biophys. Res. Commun. 67, 1144–1150.PubMedCrossRefGoogle Scholar
  15. 15.
    Racker, E. (1975) in Proceedings of the Tenth FEBS Meeting (J. Montreuil and P. Mandel, eds.) North-Holland/American Elsevier, Vol. 41, pp. 25–34.Google Scholar
  16. 16.
    Yu, C-A., Yu, L. and King, T.E. (1975) J. Biol. Chem. 250, 1383–1392.PubMedGoogle Scholar
  17. 17.
    Racker, E., Chien, T-F. and Kandrach, A. (1975) FEBS Letters, 57, 14–1 8.Google Scholar
  18. 18.
    Miller, C. and Racker, E. (1976), J. Membrane Biology, in press.Google Scholar
  19. 19.
    Racker, E. (1972) J. Membrane Biol. 10, 221–235.CrossRefGoogle Scholar
  20. 20.
    Schatz, G. and Mason, T.L. (1974) Ann. Rev. Biochem. 43, 51–87.CrossRefGoogle Scholar
  21. 21.
    Tzagoloff, A., Rubin, M.S. and Sierra, M.F. (1973) Biochim. Biophys. Acta 301, 71–104.PubMedGoogle Scholar
  22. 22.
    Kellems, R.E. and Butow, R.A. (1972) J. Biol. Chem. 247, 8043–8050.PubMedGoogle Scholar
  23. 23.
    Ebner, E., Mason, T.L. and Schatz, G. (1973) J. Biol. Chem. 248, 5360–5368.PubMedGoogle Scholar
  24. 24.
    Jollow, D., Kellerman, G.M. and Linnane, A.W. (1968) J. Cell Biol. 37, 221.PubMedCrossRefGoogle Scholar
  25. 25.
    Paltauf, F. and Schatz, G. (1969) Biochemistry 8, 335–339.PubMedCrossRefGoogle Scholar
  26. 26.
    Slonimski, P.P. (1953) La formation des enzymes respiratoires chez la levure, Masson, Paris.Google Scholar
  27. 27.
    Criddle, R.C. and Schatz, G. (1969) Biochemistry 8, 322–334.PubMedCrossRefGoogle Scholar
  28. 28.
    Mahler, H.R. (1973) CRC Crit. Rev. Biochem. 1, 381–460.PubMedCrossRefGoogle Scholar
  29. 29.
    Gollub, E.G., Trocha, P., Liu, P.K. and Sprinson, D.B. (1974) Biochem. Biophys. Res. Comm. 56, 471–477.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohad, I. (1975) in Membrane Biogenesis (Tzagoloff, A., ed.) Plenum Press, New York, pp. 279–350.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Gera D. Eytan
    • 1
  • Gottfried Schatz
    • 1
  • Efraim Racker
    • 1
  1. 1.Section of Biochemistry, Molecular & Cell BiologyCornell UniversityIthacaUSA

Personalised recommendations