Aspects on Structure and Function of Sphingolipids in Cell Surface Membranes

  • Karl-Anders Karlsson
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


Sphingolipids are components of cell surface membranes and are probably exclusively located in the outer half of the lipid bilayer. It is shown by calculation that sphingolipid is a major part of the surface monolayer, in addition to protein, cholesterol and phosphatidylcholine. The lipophilic part, ceramide, has, beside a hydro-carbon chain variation as found for other membrane lipids, characteristic structural features (amide, hydroxyls) with a natural variation (number of hydroxyls), which are suggestive of lateral polar interactions with other surface layer components. This inter-mediate zone of the bilayer (between the hydrophobic part and the polar head groups) is proposed to be of importance for some of the matrix properties of surface membranes. It has, however, attracted almost no attention so far in model studies. Three surface membrane functions have been found associated with sphingolipid polar head groups composed of carbohydrate: Na+ transport (sulphatide), cholera toxin binding (a ganglioside), and recognition (surface antigens). A molecular model of Na+-K+ translocation is formulated, where sulphatide is postulated to be essential for K+ influx (cofactor site model).


Cholera Toxin Intermediate Zone Polar Head Group Electric Organ Salt Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, S., I. Pascher, K. Larsson and K.-A. Karlsson, Molecular arrangements in glycosphingolipids, Chem. Phys. Lipids 8, 152, 1972.CrossRefGoogle Scholar
  2. Abramson, M.B., R. Katzman and H.P. Gregor, Aqueous dispersions of phosphatidylserine. Ionic properties, J. Biol. Chem. 239, 70, 1964.PubMedGoogle Scholar
  3. Abramson, M.B., R. Katzman, R. Curci and C.E. Wilson, The reactions of sulphatide with metallic cations in aqueous systems, Biochemistry 6, 295, 1967.PubMedCrossRefGoogle Scholar
  4. Abramson, M.B. and R. Katzman, Ionic interaction of sulphatide with choline lipids, Science 161, 576, 1968.PubMedCrossRefGoogle Scholar
  5. Albers, R.W., S. Fahn and G.J. Koval, The role of Na+ in the activation of Electrophorus electric organ ATPase, Proc. Nat. Acad. Sci USA 50, 474, 1963.PubMedCrossRefGoogle Scholar
  6. Chapman, D., Phase transitions and fluidity characteristics of lipids and cell membranes, Quart. Rev. Biophys. 8, 185, 1975.CrossRefGoogle Scholar
  7. Craig, S.W. and P. Cuatrecasas, Mobility of cholera toxin receptors on rat lymphocyte membranes, Proc. Nat. Acad. Sci. USA 72, 3844, 1975.PubMedCrossRefGoogle Scholar
  8. Cuatrecasas, P., Membrane receptors, Annu. Rev. Biochem. 43, 169, 1974.CrossRefGoogle Scholar
  9. Dod, B.J. and G.M. Gray, The lipid composition of rat-liver plasma membranes, Biochim. Biophys. Acta 150, 397, 1968.CrossRefGoogle Scholar
  10. Eisenman, G., Cation selective glass electrodes and their mode of operation, Biophys. J. 2, 259, 1962.PubMedCrossRefGoogle Scholar
  11. Forstner, G., K. Tanaka and K.J. Isselbacher, Lipid composition of the isolated rat intestinal microvillus membrane, Biochem. J. 109, 51, 1968.PubMedGoogle Scholar
  12. Forstner, G. and J.R. Wherrett, Plasma membrane and mucosal glyco- sphingolipids in the rat intestine, Biochim. Biophys. Acta 306, 446, 1973.Google Scholar
  13. Glynn, I.M. and S.J.D. Karlish, The sodium pump, Annu. Rev. Physiol. 37, 13, 1975.CrossRefGoogle Scholar
  14. Goldin, S.M. and S.W. Tong, Reconstitution of active transport catalyzed by the purified Na+-K+-ATPase from canine renal medulla, J. Biol. Chem. 249, 5907, 1974.PubMedGoogle Scholar
  15. Gorodilova, V.V. and A. Hollinshead, Melanoma antigens that produce cell-mediated immune responses in melanoma patients: joint US-USSR study, Science 190, 391, 1975.PubMedCrossRefGoogle Scholar
  16. Haines, T.H., The chemistry of sulpholipids, Progr. Chem. Fats Lipids (Holman, R.T. ed.) 11, 297, 1971.Google Scholar
  17. Hakomori, S.-i., Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417, 55, 1975.Google Scholar
  18. Hakomori, S.-i. and A. Kobata, Blood group antigens, in The Anti- gens. M. Sela, editor. Acad. Press, New York, 1974, vol. 2, p. 79.Google Scholar
  19. Hakomori, S.-i. and G.D. Strycharz, Investigations on cellular blood-group substances. I. Isolation and chemical composition of blood-group ABH and Leb isoantigens of sphingoglycolipid nature, Biochemistry 7, 1279, 1968.CrossRefGoogle Scholar
  20. Hilden, S. and L.E. Hokin, Active K+ transport coupled to active Na+ transport in vescles reconstituted from purified Na+-K+- -ATPase from the rectal gland of Squalus acanthias, J. Biol. Chem. 250, 6296, 1975.PubMedGoogle Scholar
  21. Hille, B., An essential ionized group in Na+ channels, Fed. Proc. 34, 1318, 1975.Google Scholar
  22. Hokin, L.E., J.L. Dahl, J.D. Deupree, J.F. Dixon, J.F. Hackney and J.F. Perdue, Studies on the characterization of the Na+-K+-ATPase. X. Purification of the enzyme from the rectal gland of Squalus acanthias, J. Biol. Chem. 248, 2593, 1973.Google Scholar
  23. Holmgren, J., I. Lönnroth, J.-E. Mânsson and L. Svennerholm, Interaction of cholera toxin and membrane GM1 ganglioside of small intestine, Proc. Nat. Acad. Sci. USA 72, 2520, 1975.PubMedCrossRefGoogle Scholar
  24. J$rgensen, P.L. Isolation and characterization of the components of the sodium pump, Quart. Rev. Biophys. 7, 239, 1975.Google Scholar
  25. Joseph, K.C. and J.P. Gockerman, Accumulation of glycolipids containing N-acetylglucosamine in erythrocyte stroma of patients with congenital dyserythropoietic anemia type II (HEMPAS), Biochem. Biophys. Res. Commun. 65, 146, 1975.CrossRefGoogle Scholar
  26. Karlsson, K.-A., Sphingolipid long-chain bases, Lipids 5, 878, 1970.PubMedCrossRefGoogle Scholar
  27. Karlsson, K.-A., Carbohydrate composition and sequence analysis of cell surface components by mass spectrometry. Characterization of the major monosialoganglioside of brain, FEBS Letters 32, 317, 1973.PubMedCrossRefGoogle Scholar
  28. Karlsson, K.-A., Carbohydrate composition and sequence analysis of a derivative of brain disialoganglioside by mass spectrometry, with molecular weight ions at m/e 2245. Potential use in the specific microanalysis of cell surface components, Biochemistry 13, 3643, 1974.Google Scholar
  29. Karlsson, K.-A. and I. Pascher, Thin-layer chromatography of ceramides, J. Lipid Res. 12, 466, 1971.PubMedGoogle Scholar
  30. Karlsson, K.-A., B.E. Samuelsson and G.O. Steen, The lipid composition and Na+-K+-dependent adenosine-tri-phosphatase activity of the salt (nasal) gland of eider duck and herring gull. A role for sulphatides in sodium-ion transport, Eur. J. Biochem. 46, 243, 1974.PubMedCrossRefGoogle Scholar
  31. Kates, M. and P.W. Deroo, Structure determination of the glycolipid sulphate from the extreme halophile Halobacterium cutirubrum, J. Lipid Res. 14, 438, 1973.PubMedGoogle Scholar
  32. Kawai, K., M. Nakao T. Nakao and M. Fujita, Purfication and some properties of Na-K+-ATPase. III. Comparison of lipid and protein components of Na+-K+-ATPase preparations at various purification steps from pig brain, Biochem. J. 73, 979, 1973.Google Scholar
  33. Kimelberg, H.K. and D. Papahajopoulos, Phospholipid requirements for (Na+-K+)-ATPase activity: head-group specificity and fatty acid fluidity, Biochim. Biophys. Acta 282, 277, 1972.PubMedCrossRefGoogle Scholar
  34. Kushwaha, S.C., M. Kates and W. Stoeckenius, Comparison of purple membrane from Halobacterium cutirubrum and Halobacterium halobium, Biochim. Biophys. Acta 426, 703, 1976.CrossRefGoogle Scholar
  35. Kyte, J., Purification of Na+-K+-ATPase from canine renal medulla, J. Biol. Chem. 246, 4157, 1971.PubMedGoogle Scholar
  36. Lipkin, M., Proliferation and differentiation of gastrointestinal cells, Physiol. Rev. 53, 891, 1973.Google Scholar
  37. Nakao, T., M. Nakao, N. Mizuno, Y. Komatsu and M. Fujita, Purification and properties of Na+-K+-ATPase. I. Solubilization and stability of lubrol extracts, J. Biochem. 73, 609, 1973.PubMedGoogle Scholar
  38. Nicolson, G.L., Transmembrane control of the receptors on normal and tumor cells, Biochim. Biophys. Acta 457, 57, 1976.Google Scholar
  39. O’Brien, J.S. and E.L. Sampson, Lipid composition of the normal human brain: gray matter, white matter, and myelin, J. Lipid Res. 6, 537, 1965.PubMedGoogle Scholar
  40. Okaya, Y., The plant sulpholipid: a crystallographic study, Acta Cryst. 17, 1276, 1964.CrossRefGoogle Scholar
  41. Ottolenghi, P., The reversible delipidation of a solubilized Na+-K-ATPase from the salt gland of the spiny dogfish, Biochem. J. 151, 61, 1975.PubMedGoogle Scholar
  42. Pascher, I., Synthesis of galactosylphytosphingosine and galacto-sylceramides containing phytosphingosine, Chem. Phys. Lipids 12, 303, 1974.PubMedCrossRefGoogle Scholar
  43. Pascher, I., Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability, submitted, 1976.Google Scholar
  44. Racker, E. and L.W. Fischer, Reconstitution of an ATP-dependent Na+ pump with an ATPase from electric eel and pure phospholipids, Biochem. Biophys. Res. Commun. 67, 1144, 1975.CrossRefGoogle Scholar
  45. Renooij, W., L.M.G. van Golde, R.F.A. Zwaal and L.L.M. van Deenen, Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes, Eur. J. Biochem. 61, 53, 1976.PubMedCrossRefGoogle Scholar
  46. Reitherman, R.W., S.D. Rosen, W.A. Frazier and S.H. Barondes, Cell surface species-specific high affinity receptors for discoidin: developmental regulation in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA 72, 3541, 1975.PubMedCrossRefGoogle Scholar
  47. Rodewald, R., Intestinal transport of antibodies in the newborn rat, J. Cell Biol. 58, 189, 1973.PubMedCrossRefGoogle Scholar
  48. Rouser, G., G.J. Nelson, S. Fleischer and G. Simon, Lipid composition of animal cell membranes, organelles and organs, In Biological Membranes. D. Chapman, editor. Academic Press, London, 1968, p. 5.Google Scholar
  49. Rovis, L., B. Anderson, E.A. Kabat, F. Gruezo and J. Liao, Structures of oligosaccharides produced by base-boEohydride degrada-tion of human ovarian cyst blood group H, Leu and Lea active glycoproteins, Biochemistry 12, 5340, 1973.CrossRefGoogle Scholar
  50. Sedlacek, H.H., J. Stärk, F.R. Seiler, W. Ziegler and H. Wiegandt, Cholera toxin induced redistribution of sialoglycolipid receptor at the lymphocyte membrane, FEBS Letters 61, 272, 1976.PubMedCrossRefGoogle Scholar
  51. Shamoo, A.E. and M. Myers, Na+-Dep+endent ionophore as part of the small polypeptide of the Nat-K -ATPase from eel electroplax membrane, J. Membrane Biol. 19, 163, 1974.CrossRefGoogle Scholar
  52. Shur, B.D. and S. Roth, Cell surface glycosyltransferases, Biochim. Biophys. Acta 415, 473, 1975.Google Scholar
  53. Singer, S.J., The molecular organization of membranes, Annu. Rev. Biochem. 43, 805, 1974.CrossRefGoogle Scholar
  54. Smith, E.L., J.M. McKibbin, K.-A. Karlsson, I. Pascher and B.E. Samuelsson, Main structures of the Forssman glycolipid hapten and a Leb-like glycolipid of dog small intestine, as revealed by mass spectrometry. Difference in ceramide structure related to tissue localization, Biochim. Biophys. Acta 388, 171, 1975a.Google Scholar
  55. Smith, E.L., J.M. McKibbin, K.-A. Karlsson, I. Pascher, B.E. Samuels-son, Y.-T. Li and S.-C. Li, Characterization of a human intestinal fucolipid with blood group Lea activity, J. Biol. Chem. 250, 6059, 1975b.Google Scholar
  56. Smith, S.W. and R.L. Lester, Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate, J. Biol. Chem. 249, 3395, 1974.PubMedGoogle Scholar
  57. Smythies, J.R., F. Bennington, R.J. Bradley, W.F. Bridgers and R.D. Morin, The molecular structure of the Na+ channel, J. Theoret. Biol. 43, 29, 1974.CrossRefGoogle Scholar
  58. Steck, T.L. and G. Dawson, Topographical distribution of complex carbohydrates in the erythrocyte membrane, J. Biol. Chem. 249, 2135, 1974.PubMedGoogle Scholar
  59. Sundaralingam, M., Molecular structure and conformations of the phospholipids and sphingomyelins, Ann. NY Acad. Sci 195, 324, 1972.PubMedCrossRefGoogle Scholar
  60. Sweadner, K.J. and S.M. Goldin, Reconstitution of active ion trans-port by Na-K+-ATPase from canine brain, J. Biol. Chem. 250, 4022, 1975.PubMedGoogle Scholar
  61. Sweeley, C.C. and G. Dawson, Lipids of the erythrocyte, In Red Cell Membrane Structure and Function. G.A. Jamieson and T.J. Greenwalt, editors. J.B. Lippincott Co., Philadelphia, 1969, p. 172.Google Scholar
  62. Tao, R.V.P. and E. Cotlier, Ceramides of human normal and cataractous lens, Biochim. Biophys. Acta 409, 329, 1975.Google Scholar
  63. van Heyningen, W.E., C.C.J. Carpenter, N.F. Pierce and W.B. Greenough III, Deactivation of cholera toxin by ganglioside, J. Infect. Dis. 124, 415, 1971.PubMedCrossRefGoogle Scholar
  64. Weiser, M.M., Intestinal epithelial cell surface membrane glyco-protein synthesis. I. An indicator of cellular differentiation, J. Biol. Chem. 248, 2536, 1973.Google Scholar
  65. Weiser, M.M. and A.P. Douglas, An alternative mechanism for gluten toxicity in coeliac disease, The Lancet 1, 567, 1976.CrossRefGoogle Scholar
  66. Zambrano, F., S. Fleischer and B. Fleischer, Lipid composition of the Golgi apparatus of rat kidney and liver in comparison with other subcellular organelles, Biochim. Biophys. Acta 380, 357, 1975.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Karl-Anders Karlsson
    • 1
  1. 1.Department of Medical BiochemistryUniversity of Göteborg, FackGöteborg 33Sweden

Personalised recommendations