Molecular Organization and the Fluid Nature of the Mitochondrial Energy Transducing Membrane

  • Charles R. Hackenbrock
Part of the Nobel Foundation Symposia book series (NOFS, volume 34)


The inner or energy transducing membrane of the mitochondrion is the site of various metabolic activities, including the sequential transfer of electrons along a chain of respiratory proteins and the coupling of the free energy derived from such transfer to the phosphorylation of ADP. Electron transfer between the heme protein components of the membrane is rapid and can be expected to require protein-protein interactions equal to the half times of their oxidations, for example, as rapid as 2 msec in the case of the oxidation of cytochrome c by cytochrome c oxidase (Chance et al., 1967). Interactions between other redox components in the membrane, however, may be somewhat slower as indicated by delays in the transfer of reducing equivalents, as for example between the b cytochromes and cytochrome c l and between the flavoproteins and b cytochromes. Of interest in this regard are the reported delays in the rate and half time of ATP synthesis coupled to the rapid half time oxidation of cytochrome c oxidase (Lemasters and Hackenbrock, 1975; Thayer and Hinkle, 1975). Irrespective of such delays, the sequential and rapid events inherent in electron transfer and energy transduction generally tend to support the inference that the proteins in the energy transducing membrane of the mitochondrion are stabilized in a continuous, rigid protein-protein lattice (Fleisher et al., 1967; Sjöstrand and Barajas, 1970; Capaldi and Green, 1972). In classical agreement, the specific proteins of the respiratory chain have been assumed to be ordered with a recurring lateral intermolecular spacing throughout the plane of the membrane (Klingenberg, 1968; Lehninger, 1970). Further, these notions are supported by the fact that the energy transducing membrane is endowed with an unusually high protein content (75%) compared to various other membranes of eukaryote cells.


Fracture Face Integral Protein Intramembrane Particle Lipid Phase Transition Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Andrews and C. R. Hackenbrock, Exp. Cell Res. 90, 127 (1975).PubMedCrossRefGoogle Scholar
  2. P. D. Boyer, in Oxidases and Related Redox Systems, eds. T. E. King, H. S. Mason and M. Morrison, Wiley, New York, p. 994 (1965).Google Scholar
  3. P. D. Boyer, B. O. Stokes, R. G. Wolcott and C. Degani, Fed. Proc. 34, 1711 (1975).PubMedGoogle Scholar
  4. R. A. Capaldi and D. E. Green, FEBS Lett. 25, 205 (1972).PubMedCrossRefGoogle Scholar
  5. R. A. Capaldi and P-F. Tan. Fed. Proc. 33, 1515 (1974).Google Scholar
  6. B. Chance, D. DeVault, V. Legallais, L. Mela f T. Yonetani, in Nobel Symposium 5, Fast Reactions and Primary Processes in Chemical Kinetics, ed. S. Claesson, Interscience Pub., New York, p. 437 (1967).Google Scholar
  7. D. Chapman, J. Urbina and K. M. Keough, J. Biol. Chem. 249, 2512 (1974).PubMedGoogle Scholar
  8. Y. S. Chen and W. L. Hubbell, Exp. Eye Res. 17, 517 (1973).PubMedCrossRefGoogle Scholar
  9. A. Colbeau, J. Nachbaur and P. M. Vignais, Biochim. Biophys. Acta, 249, 462 (1971).CrossRefGoogle Scholar
  10. M. Edidin and D. Fambrough, J. Cell Biol. 57, 27 (1973).PubMedCrossRefGoogle Scholar
  11. S. Fleisher, B. Fleishér and W. Stoeckenius, J. Cell Biol. 32, 193 (1967).CrossRefGoogle Scholar
  12. C. W. M. Grant and H. M. McConnell, Proc. Natl. Acad. Sci. USA 71, 4653 (1974).CrossRefGoogle Scholar
  13. C. R. Hackenbrock, J. Cell Biol. 30, 269 (1966).PubMedCrossRefGoogle Scholar
  14. C. R. Hackenbrock, J. Cell Biol. 37, 345 (1968a).CrossRefGoogle Scholar
  15. C. R. Hackenbrock, Proc. Natl. Acad. Sci. USA 61, 598 (1968b)CrossRefGoogle Scholar
  16. C. R. Hackenbrock, Ann. N.Y. Acad. Sci. 195, 492 (1972a).CrossRefGoogle Scholar
  17. C. R. Hackenbrock, J. Cell Biol. 53, 450 (1972b).PubMedCrossRefGoogle Scholar
  18. C. R. Hackenbrock, in Mechanisms in Bioenergetics, eds. G. F. Azzone, L. Ernster, S. Papa, E. Quagliariello and N. Siliprandi, Academic Press, New York, p. 77 (1973).Google Scholar
  19. C. R. Hackenbrock, Arch. Biochem. Biophys. 170, 139 (1975).Google Scholar
  20. C. R. Hackenbrock and K. J. Miller, J. Cell Biol. 65, 615 (1975).PubMedCrossRefGoogle Scholar
  21. C. R. Hackenbrock and K. Miller Hammon, J. Biol. Chem. 250, 9185 (1975).Google Scholar
  22. C. R. Hackenbrock, T. G. Rehn, E. C. Weinbach F, J. J. Lemasters, J. Cell Biol. 51, 123 (1971a).PubMedCrossRefGoogle Scholar
  23. C. R. Hackenbrock, T. G. Rehn, E. C. Weinbach F, J. J. Lemasters, in Energy Transduction in Respiration and Photosynthesis, eds. E. Quagliariello, S. Papa and C. S. Rossi, Adriatica Editrice, Bari, p. 285 (1971b).Google Scholar
  24. H. J. Harmon, J. D. Hall E F. L. Crane, Biochim. Biophys. Acta. 334, 119 (1974).Google Scholar
  25. E. E. Jacobs, E. C. Andrews, W. Cunningham and F. L. Crane, Biochem. Biophys. Res. Commun. 25, 87 (1966).CrossRefGoogle Scholar
  26. P. C. Jost, 0. H. Griffith, R. A. Capaldi and G. Vanderkooi, Proc. Natl. Acad. Sci. USA 70 480 (1973).PubMedCrossRefGoogle Scholar
  27. R. E. Kellems, V. Allison and R. A. Butow, J. Cell Biol. 65, 1 (1975).PubMedCrossRefGoogle Scholar
  28. A. Keith, G. Bulfield, and W. Snipes, Biophysic. J. 10, 618 (1970).CrossRefGoogle Scholar
  29. K. M. Keough, E. Oldfield, D. Chapman and P. Beynon, Chem. Phys. Lipids 10, 37 (1973).PubMedCrossRefGoogle Scholar
  30. W. Kleeman, C. W. M. Grant and H. M. McConnell, J. Supramol. Struct. 2, 609 (1974).CrossRefGoogle Scholar
  31. M. Klingenberg, in Biological Oxidations, ed. T. P. Singer, Wiley, New York, p. 3 (1968).Google Scholar
  32. A. Kröger, M. Klingenberg and S. Schweidler, Eur. J. Biochem. 34, 358 (1973a)PubMedCrossRefGoogle Scholar
  33. A. Kröger, M. Klingenberg and S. Schweidler, Eur. J. Biochem. 39, 313 (1973b)PubMedCrossRefGoogle Scholar
  34. B. D. Ladbrooke and D. Chapman, Chem. Phys. Lipids 3, 304 (1969). M. P. Lee and A. R. L. Gear, J. Biol. Chem. 249, 7541 (1974).Google Scholar
  35. A. L. Lehninger, Biochemistry, Worth Publishers, Inc., New York (1970).Google Scholar
  36. J. J. Lemasters and C. R. Hackenbrock, Fed. Proc. 34, 596 (1975).Google Scholar
  37. P. A. Liebman and G. Entine, Science 185, 457 (1974).PubMedCrossRefGoogle Scholar
  38. H. M. McConnell, K. L. Wright and B. G. McFarland, Biochem. Biophys. Res. Commun. 47, 273 (1972).CrossRefGoogle Scholar
  39. D. Papahadjopoulos, W. J. Vail Ei M. Moscarello, J. Membrane Biol. 22, 143 (1975).CrossRefGoogle Scholar
  40. D. Parsons, G. R. Williams and B. Chance, Ann. NY Acad. Sci. 137, 643 (1966).PubMedCrossRefGoogle Scholar
  41. M-M. Poo and R. A. Cone, Nature 247, 438 (1974).PubMedCrossRefGoogle Scholar
  42. J. K. Raison, J. M. Lyons and W. W. Thomson, Arch. Biochem. Biophys. 142, 83 (1971).PubMedCrossRefGoogle Scholar
  43. F. S. Sjöstrand and L. Barajas, J. Ultrastruct. Res. 32, 293 (1970).PubMedCrossRefGoogle Scholar
  44. J. M. Steim, M. E. Tourtellotte, J. C. Reinert, R. N. McElhaney F, R. L. Rader, Biochemistry 63, 104 (1969).Google Scholar
  45. W. S. Thayer Ei P. C. Hinklé, J. Biol. Chem. 250, 5336 (1975).Google Scholar
  46. H. Trauble and P. Overath, Biochim. Biophys. Acta 307, 491 (1973).CrossRefGoogle Scholar
  47. G. Vanderkooi, Biochim. Biophys. Acta 344, 307 (1974)PubMedGoogle Scholar
  48. S. Werner and W. Neupert, Eur. J. Biochem. 25, 369 (1972).CrossRefGoogle Scholar
  49. H. Wohlrab, Biochemistry 9, 474 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Charles R. Hackenbrock
    • 1
  1. 1.University of Texas Health Science CenterSouthwestern Medical SchoolDallasUSA

Personalised recommendations