Advertisement

Spectra of Coals and Coal Extracts: Proton Magnetic Resonance Spectra of Pyridine and Carbon Disulfide Extracts

  • H. L. Retcofsky
  • R. A. Friedel

Abstract

High-resolution proton magnetic resonance (1H NMR) spectrometry is a technique that can be used to study the hydrogen distribution in liquid products and soluble materials from coal. The relative amounts of aromatic hydrogen, benzylic hydrogen, and other nonaromatic hydrogen can be determined directly. Because all protons have essentially the same NMR sensitivity, no intensity calibration of the spectrometer is required; thus, in this respect, 1H NMR is far superior to many other techniques used in the investigation of coal structure. Unfortunately, high-resolution NMR is not applicable to whole coals, since the dipole-dipole interactions in solids generally prevent the observation of chemically shifted NMR absorption areas.(1) Nevertheless, coal extracts, which often represent a large amount of the whole coals, can be studied by the technique. The properties of extracts are thought to be similar to those of the whole coals from which they are derived.

Keywords

Carbon Disulfide Bituminous Coal Coal Extract Aromatic Hydrogen Hydrogen Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Pople, W. G. Schneider, and H. J. Bernstein, “High-Resolution Nuclear Magnetic Resonance,” McGraw-Hill Book Co., New York (1959), p. 7.Google Scholar
  2. 2.
    R. A. Friedel, J. Chem. Phys. 31, 280 (1959).Google Scholar
  3. 3.
    R. A. Friedel and H. L. Retcofsky, paper presented at 5th Carbon Conf., Pennsylvania State Univ., June 19–23, 1961.Google Scholar
  4. 4.
    R. A. Friedel and H. L. Retcofsky, in: “Proc. 5th Carbon Conf.,” Vol. II, Pergamon Press (1963), p. 149.Google Scholar
  5. 5.
    J. F. M. Oth, E. de Ruiter, and H. Tschamler, Brennst. Chemie 42, 378 (1961).Google Scholar
  6. 6.
    G. Takeya, M. Itoh, A. Suzuki, and S. Yokoyama, Bull. Chem. Soc. of Japan 36, 1222 (1963).Google Scholar
  7. 7.
    G. Takeya, M. Itoh, A. Suzuki, and S. Yokoyama, J. Fuel Soc. Japan 43, 837 (1964).CrossRefGoogle Scholar
  8. 8.
    R. A. Durie, Y. Shewchyk, and S. Sternhell, Fuel 45, 99 (1966).Google Scholar
  9. 9.
    H. H. Oelert, Z. Anal. Chemie 231, 105 (1967).CrossRefGoogle Scholar
  10. 10.
    R. B. Williams, ASTM Special Tech. Pub. No. 224 (1958), p. 168.Google Scholar
  11. 11.
    J. K. Brown and W. R. Ladner, Fuel 39, 87 (1960).Google Scholar
  12. 12.
    R. S. Winniford and M. Bersohn, Preprints, Amer. Chem. Soc, Div. of Fuel Chem. (1962), p. 21.Google Scholar
  13. 13.
    T. F. Yen and J. G. Erdman, Preprints, Amer. Chem. Soc., Div. of Petroleum Chem. (1962), p. 99.Google Scholar
  14. 14.
    C. W. DeWalt, Jr. and M. S. Morgan, Preprints, Amer. Chem. Soc., Div. of Fuel Chem. (1962), p. 33.Google Scholar
  15. 15.
    H. L. Retcofsky and R. A. Friedel, Fuel 47, 487 (1968).Google Scholar
  16. 16.
    R. Raymond, I. Wender, and L. Reggel, Fuel 43, 299 (1964).Google Scholar
  17. 17.
    L. M. Jackman, “Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry,” Pergamon Press, London (1959), p. 71.Google Scholar
  18. 18.
    L. Reggel, C. Zahn, I. Wender, and R. Raymond, Bureau of Mines Bull. 615, US Dept of the Interior (1965), p. 17.Google Scholar
  19. 19.
    D. W. van Krevelen, “Coal,” Elsevier, Amsterdam (1961), p. 192.Google Scholar
  20. 20.
    S. Friedman, M. L. Kaufman, W. A. Steiner, and I. Wender, Fuel 40, 33 (1961).Google Scholar
  21. 21.
    E. Clar, U. Sanigök, and M. Zander, Tetrahedron 24, 2817 (1968).CrossRefGoogle Scholar
  22. 22.
    G. Takeya, M. Itoh, A. Suzuki, and S. Yokoyama, Research Report of Hokkaido Univ. 35, 129 (1964).Google Scholar
  23. 23.
    D. W. van Krevelen, H. A. G. Chermin, and J. Schuyer, Fuel 36, 313 (1957).Google Scholar
  24. 24.
    E. de Ruiter and H. Tschamler, Brennst. Chemie 39, 362 (1958).Google Scholar
  25. 25.
    I. G. C. Dryden, Fuel 37, 444 (1958).Google Scholar
  26. 26.
    J. F. M. Oth and H. Tschamler, Fuel 42, 467 (1963).Google Scholar
  27. 27.
    W. R. Ladner and A. E. Stacey, Fuel 43, 13 (1964).Google Scholar
  28. 28.
    D. W. van Krevelen, H. A. G. Chermin, and J. Schuyer, Fuel 38, 483 (1959).Google Scholar
  29. 29.
    J. Schuyer, H. Dijkstra, and D. W. van Krevelen, Fuel 33, 409 (1954).Google Scholar
  30. 30.
    I. G. C. Dryden and M. Griffith, Fuel 34, S36 (1955).Google Scholar
  31. 31.
    H. N. M. Dormans, F. J. Huntjens, and D. W. van Krevelen, Fuel 36, 321 (1957).Google Scholar
  32. 32.
    R. A. Friedel and H. L. Retcofsky, Chem. Ind. 1966, 455.Google Scholar
  33. 33.
    H. L. Retcofsky and R. A. Friedel, in: “Coal Science,” (R. F. Gould, ed.) Adv. Chem. Series No. 55, American Chemical Society, Washington, D.C. (1966), p. 503.Google Scholar
  34. 34.
    P. C. Lauterbur, Phys. Rev. Letters 1, 343 (1958).CrossRefGoogle Scholar
  35. 35.
    D. G. Davis and R. J. Kurland, J. Chem. Phys. 46, 388 (1967).CrossRefGoogle Scholar
  36. 36.
    K. Siegbahn, Nova Acta Reg. Soc. Sci. UPSA 20 (1967).Google Scholar
  37. 37.
    Varian Associates, private communication.Google Scholar
  38. 38.
    D. W. van Krevelen, “Coal,” Elsevier, Amsterdam (1961), p. 447.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • H. L. Retcofsky
    • 1
  • R. A. Friedel
    • 1
  1. 1.Pittsburgh Coal Research CenterUS Department of the Interior, Bureau of MinesPittsburghUSA

Personalised recommendations